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ABSTRACT 

We are developing small animal imaging techniques to characterize the kinetics of lipid accumulation/reduction of fat 
depots in response to genetic/dietary factors associated with obesity and metabolic syndromes.  Recently, we developed 
an MR ratio imaging technique that approximately yields lipid= flipid + waterg. In this work, we develop a statistical 
model for the ratio distribution that explicitly includes a partial volume (PV) fraction of fat and a mixture of a Rician and 
multiple Gaussians.  Monte Carlo hypothesis testing showed that our model was valid over a wide range of coefficient of 
variation of the denominator distribution ( c:v: : 0 ¡ 0:20 ) and correlation coefficient among the numerator and 
denominator (½: 0 ¡ 0:95), which cover the typical values that we found in MRI data sets (c:v:: 0:027 ¡ 0:063, ½ :
0:50 ¡ 0:75).  Then a maximum a posteriori (MAP) estimate for the fat percentage per voxel is proposed.  Using a 
digital phantom with many PV voxels, we found that ratio values were not linearly related to PV fat content and that our 
method accurately described the histogram.  In addition, the new method estimated the ground truth within +1:6% vs. 
+43% for an approach using an uncorrected ratio image, when we simply threshold the ratio image.  On the six 
genetically obese rat data sets, the MAP estimate gave total fat volumes of  279 § 45mL, values ¼ 21% smaller than 
those from the uncorrected ratio images, principally due to the non-linear PV effect.  We conclude that our algorithm can 
increase the accuracy of fat volume quantification even in regions having many PV voxels, e.g. ectopic fat depots. 

Keywords: Classification, segmentation, statistical methods, Monte Carlo hypothesis testing, fat quantification, 
maximum a posteriori estimate 

1. PURPOSE 
We are developing small animal imaging techniques to characterize the kinetics of lipid accumulation/reduction of fat 
depots (visceral, subcutaneous, muscular, etc.) in response to genetic/dietary factors associated with obesity and 
metabolic syndromes.  Quantitative analysis of body fat is therefore vital to the study.  Such imaging and analysis 
protocols are also beneficial to various epidemiological studies [1, 2, 3].  Volumetric information and distribution of the 
fat are important determining factors of the health risks related to obesity, such as diabetes, cardiovascular and 
cerebrovascular diseases.  Recently, we developed a ratio imaging technique, which based upon spin echo sequence and 
two MRI acquisitions, to provide an estimate of lipid content per voxel [4]. Our method is inherently free from phase 
artifact (we use only magnitude images) and signal intensity bias field, and is less sensitive to chemical shift artifact than 
the Dixon method.  Also, it produces relatively high signal-to-noise ratio (SNR) images as compared to chemically 
selective excitation pulses.  One of our studies shows that the method provides reproducible volumetric measurement of 
fat depots. A ratio image is computed by dividing a “fat only” T1-weighted image by a “fat+water” counterpart on a 
pixel-by-pixel basis.  The chemical shift selective (CHESS) pulses [5] are used to produce the “fat only” image with 
negligible water signal. 

In the present work, we investigate the statistical distribution of the ratio intensity and develop a model for it.  The 
goodness-of-fit is assessed with Monte Carlo hypothesis testing.  We also invalidate the linearity assumption on the ratio 
intensity and the lipid content with numerical phantom and MRI data sets from animal experiments.  A maximum a
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posteriori (MAP) estimate for the percentage of fat per voxel from the ratio images is proposed.  Experimental results 
show that our estimate is capable of correcting the non-linearity and producing fat content estimates at each voxel.  
Furthermore, it increases the accuracy of fat volume quantification. 

2. METHODS
MRI magnitude in the presence of noise was shown to be a Rician distributed random variable due to the nonlinear 
mapping of the real and imaginary signals [6]. This finding opens opportunity for statistical modeling of MRI 
magnitudes to applications such as image segmentation [7]. Gudbjartsson and Patz [6] suggested that if the signal-to-
noise ratio (SNR) is larger than two, the magnitude is approximately Gaussian distributed; SNR is defined as A=¾n,
where A  is the truth magnitude (magnitude image intensity in the absence of noise) and ¾n  denotes the standard 
deviation of the Gaussian noise in the real and imaginary images. 

In this section, we begin by presenting the statistical models of (1) pure tissue class and (2) mixture of two pure tissue 
classes in ratio MRI magnitude image. Finally, we construct a finite mixture model of the magnitude ratio image in the 
context of fat quantification with MRI and propose a method to calculate the percentage of fat in each voxel. 

2.1 Ratio of Two Gaussian Distributed Magnitudes 

We start the statistical modeling of the ratio of two MRI magnitudes with the Gaussian distribution. Suppose Y  and X
are two Gaussian distributed random variables with means ¹i, variances ¾i, (i 2 fx; yg) and correlation coefficient ½,
and WR = Y=X is the ratio of the two random variables. The theoretical distribution with zero means was given in the 
seminal work by Geary [8]. Fieller [9] and Marsaglia [10] later investigated a general exact formulation of the 
distribution with non-zero means. The standard approximation of the distribution were considered by Hinkley [11]. 
Hayya et al. [12] further suggested that if the coefficient of variation of X , c:v: (X), is small, such distribution 
approximates normality. The rationale is straightforward, as under such condition, the denominator approaches a 
constant, thus the quotient approaches a Gaussian distribution (in general, the same kind of distribution as the numerator). 
The statistical modeling of the ratio MRI signals in this paper is built upon such normal approximation. According to the 
approximation [12], WR » N ¡
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In this work, we assume the correlation coefficient ½ = 0 to simplify the parameter estimation. Later in Section 3, we 
validate such assumption with Monte Carlo hypothesis testing. 

2.2 Ratio of Two Mixture Magnitudes 

Since the mixture of two Gaussian distributed random variables is also Gaussian distributed, by following the 
formulation presented in Section 2.1, we derive the normally approximated distribution WR0  to model the ratio 
distribution of the magnitude of two mixtures. Let Xi » N ¡

¹x:i; ¾
2
x:i

¢
 and Yi » N ¡

¹y:i; ¾
2
y:i

¢
(i 2 f1; 2g) be four 

Gaussian distributed random variables, where i is the class index. X1 and X2 compose a mixture with composition 
variable ® 2 [0; 1] (denotes the proportion of X2 in the mixture), and same for Y1 and Y2. The means and variances of 
the mixtures are then expressed as, 
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By substituting all these means and variances into Equations (1) (assume ½ = 0), we have the mean and variance of the 
normally approximated distribution WR0 as follow, 

¹® =
¹y;®

¹x;®
+

¾2
x;®¹y;®

¹3
x;®

¾2
® =

¾2
x;®¹2

y;®

¹4
x;®

+
¾2

y;®

¹2
x;®

. (3) 

Finally, we marginalize the variable ® to obtain the probability density function (pdf) of the ratio of two mixture signals, 

f (z) =
1

Z

Z 1

0

h (®) g
¡
z; ¹®; ¾2
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¢
d®, (4) 

where z is the signal ratio variable, Z  is a normalization constant and h : [0; 1] ! [0; 1] is a weighting function of the 
normally approximated distribution WR0 at various compositions. This marginalization between 0 and 1 is based on a 
general assumption that the values of the composition variable ® may have different chance of occurrence in its domain. 
Such chance is denoted by h (®) and therefore we have a constraint on h,

Z 1

0

h (®) d® = 1. (5) 

This is similar to the method of Santago and Gage [13] in which they focused on the magnitude pdf of partial volume 
voxels. By assuming the boundary between the tissues is arbitrarily located within the mixture voxel, they marginalize 
the magnitude pdfs of various mixture compositions with a constant weighting function. 

2.3 The Finite Mixture Model (FMM) 

We follow the derivation given in Section 2.1 to model the distribution of the magnitude ratio (Mf=Mfw) in pure fat 
regions (cf. Equation (1), y  denotes “fat only”, x  denotes “fat+water” and r  denotes the magnitude ratio). This is 
justified by the fact that the SNR of those regions is high enough to give a good distribution approximation with the 
Gaussian pdf. However, for the pure water regions, SNR in If  is small, Gaussian distribution does not give good 
approximation. One has to model the magnitude variation of Mf  with Rician distribution [6]. In this work, it is 
reasonable to further assume that the distribution of Mf=Mfw in the pure water regions is Rician. This is because the 
coefficient of variation of the denominator (Mfw) is small (cf. Section 2.1). Statistical modeling of the mixture classes in 
ratio images is problematic. When ® is small, i.e. large portion is water, SNR of Mf  may not large enough for a good 
Gaussian approximation. Nevertheless, as this only contributes a small portion in the whole image volume, we 
approximate its distribution with a Gaussian pdf to not over-complicate the modeling. As such, we use the pdf in 
Equation (4) to model the ratio distribution of the mixture classes (cf. Equations (2) and (3), y denotes “fat only”, x
denotes “fat+water”, class 1 denotes pure water and class 2 denotes pure fat). 
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The overall formulation of the finite mixture model (FMM) that describes the magnitude ratio distribution becomes the 
following, 
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where ai (i 2 ff; m;wg) are the weights of the three sub-models, the subscript f , m and w denote the parameters for pure 
fat, mixture of fat and water, and pure water, respectively. The parameters ¹f  and ¾2

f  are the mean and variance of the 
Gaussian distribution g (¢) (cf. Equation (1), assuming ½ = 0) that models the ratio variation in the pure fat class. f (¢) is 
the statistical model of the mixture classes (cf. Equation (4)). The function r (¢) is the Rician distribution, vw is the 
magnitude of the underlying real and imaginary signals of the pure water class and ¾2

w is the variance of the Gaussian 
noise in the individual signals, I0 (¢) is the modified Bessel function of the first kind with order zero. 

The parameters of the statistical model are estimated by using the method of maximum likelihood, the likelihood 
function to be maximized is the function p (z)  in Equation (6). Those parameters are the sub-model weights ai

(i 2 ff; m;wg), the weighting function h (®), the Rician parameters vw and ¾2
w, the means and variances of the pure fat 

class in If  and Ifw, the mean and variance of the pure water class in Ifw, and the mean and variance of the pure water 
class in If . Once the parameters are estimated, we employ the maximum a posteriori (MAP) method to quantify the fat 
content in each voxel.  As a final output of the algorithm, we aggregate these estimates into an ®-image. 

3. RESULTS
We construct a numerical phantom in a 3-D space that contains a portion of an ellipsoid.  It is to mimic a part of a fat 
depot that is surrounded by water-predominated tissues in a biological object.  A “fat only” image volume (If) and a 
“fat+water” image volume (Ifw) are synthesized at high resolution.  If we treat the whole image volume as 1 unit, there 
is 0:4643 unit of fat in the phantom.  Images are then downsampled into low resolution to help introduce partial volume 
averaging and mixture classes of different combinations of pure fat and pure water.  Fig. 1(a) and Fig. 1(b) show the low 
resolution image of the numerical phantom and a synthetic ratio image If=Ifw , respectively.  Synthetic data are 
generated with reference to real MRI data sets that contain images of a plastic bottle filled with half soybean oil and half 
deionized water. 

A Monte Carlo hypothesis testing method is employed to test the validity of the statistical model and assess the 
goodness-of-fit.  The Monte Carlo hypothesis testing begins with generating multiple realizations from the statistical 
model.  Pearson's chi-square statistic is then computed for each realization.  The distribution of the test statistic (denoted 
S) helps perform the null hypothesis H0 testing: the observed data is a realization of the model.  The P-value of the test 
is defined as, 

P = Pr (S > sobsjH0) (9) 
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where sobs is the test statistic value for the observed data.  In addition to evaluating the model, we test the validity of the 
assumptions of the model.  The assumptions are (1) coefficient of variation of the denominator distribution (c:v:) is small 
enough to justify the Gaussian approximation of the magnitude ratio distribution and (2) correlation coefficient of the 
numerator and denominator (½) can be neglected in the modeling.  The null hypothesis is tested against different c:v: and 
½ values.  Results are presented in Fig. 2.  It is evident that the statistical model is valid over a wide range of c:v:
(0 ¡ 0:2) and ½ (0 ¡ 0:95), which cover the typical values in the MRI rat data sets that we have tested — c:v:: 0:063 for 
water and 0:027 for fat; ½: 0:75 for water and 0:5 for fat. 

Fig. 1. (a) The low resolution image of the numerical phantom.  (b) A synthetic ratio image If=Ifw, synthetic data are 
generated with reference to real MRI data sets that contain images of a plastic bottle filled with half soybean oil and 
half deionized water.  (c) The maximum a posteriori (MAP) estimate, ®-image.

Furthermore, we invalidate the linearity assumption on the relationship between the magnitude ratio and the percentage 
of fat visually by scatter plots and histograms.  Numerical quantification with the Pearson's linear correlation coefficient 
(r) on the two quantities is also conducted.  Fig. 3(a) (Fig. 3(b)) shows the plots and histograms between the magnitude 
ratio (® estimate) and the percentage of fat for the phantom data.  It is illustrated that ratio intensity is not linearly related 
to the fat content (r = 0:9527), on the contrary, our ® estimate is (r = 0:9731).  This can be realized from the scattering 
of the points, the scatter points of ratio intensity are laid on arcs, whereas, the points of our ® estimate are laid on straight 
lines that pass through the origin.  For the MRI rat data sets (we have tested 6  data sets with genetically obese 
spontaneously hypertensive Koletsky rats), since the truth data is missing, we use the “fat only” image to approximate 
the truth.  In order to reduce the effect from the receive coil sensitivity inhomogeneity, a small region of interest is used 
in the study.  Similar results are observed, r = 0:9632 § 0:0212  for ratio intensity and r = 0:9891 § 0:0097  for ®
estimate.  Fig. 1(c) shows the ®-image of the phantom.  The ratio and ®-image of a MRI rat data set are given in Fig. 4. 

Finally, we study the quantification of fat depots volume based upon the ratio images and the ®-images with a simple 
thresholding method.  The threshold used to segment the fat volume in a ratio image is the mid-point of the two peaks 
identified manually from the histogram, and we use 0:5 as the threshold to partition all the ®-images. Thresholding the 
ratio image with the mid-value of the peaks assumes that there is a linearity with the fat content, whereas, thresholding 
with ® = 0:5 means that we classify a voxel as fat if there is more than 50% of its volume is fat.  In case of rat data sets 
where no truth data are available, we use the total fat volume estimated from the “fat only” image as a reference, despite 
the fact that it is prone to under-estimation due to the receive coil sensitivity inhomogeneity.  The mid-point of the two 
peaks in the histogram is used as a threshold to segment the fat volume.  Results show that using ratio images for fat 
quantification tends to over-estimate the fat depot volume significantly, as compare to ®-images, in the digital phantom 
(truth: 0:4643  unit; ratio intensity: 0:6619  unit [ 42:56%  over-estimated]; ®  estimate: 0:4719  unit [ 1:64%  over-
estimated]).  For the 6 MRI rat data sets, the reference total fat volume is 246 § 42mL, thresholding the ratio images 
give 350 § 51mL (£1:43 § 0:06 of the reference volume) while the ® estimate gives 279 § 45mL (£1:13 § 0:02 of the 
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reference volume).  We concluded that our algorithm is capable of increasing the accuracy of the fat quantification using 
the MRI ratio imaging technique. 

Fig. 2. (a) Coefficient of variation of the denominator distribution (c:v:) vs. P-value.  (b) Correlation coefficient of the 
numerator and denominator (½) vs. P-value.  The flat surfaces are at P-value = 0:05, they show the significant level of 
the testing.  It is evident that the statistical model is valid over a wide range of c:v: (0 ¡ 0:2) and ½ (0 ¡ 0:95), which 
cover the typical values in the MRI rat data sets that we have tested — c:v:: 0:063 for water and 0:027 for fat; ½: 0:75

for water and 0:5 for fat. 

Fig. 3. (a) Scatter plots and histograms on the relationship between the ratio intensity and the percentage of fat for the 
phantom data.  (b) Similar plots and histograms for our ® estimate.  It is illustrated that ratio intensity is not linearly 
related to the fat content (note that scatter points are laid on arcs, r = 0:9527), on the contrary, our ® estimate is 
(points are laid on straight lines that pass through the origin, r = 0:9731).  The linearity between the ® estimate and 
the truth fat content can also be realized from their histograms, both histograms are very similar as shown in (b). 
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Fig. 4. The (a) ratio and  (b) ®-image of a MRI rat data set are presented.  Both images are shown in the same brightness and 
contrast.  It is evident that ® estimate gives an image with a better contrast, whereas, signals are flat in the ratio image.  
As such, our ®-image is capable of giving a clearer delineation of the water-fat boundary in addition to a more accurate 
volumetric quantification. 

4. NEW OR BREAKTHROUGH WORK 
We are the first group reporting the statistical model of the ratio images.  The goodness-of-fit of the model is assessed 
with Monte Carlo hypothesis testing.  We also invalidate the linearity assumption between the ratio intensity and the fat 
content per voxel.  An algorithm, based upon a Bayesian formulation, to estimate the percentage of fat per voxel from 
the ratio images is finally proposed. 

5. CONCLUSION 
We have demonstrated a novel method to estimate the percentage of fat per voxel from the ratio images.  Our estimate is 
capable of correcting the non-linearity relationship between the ratio intensity and the fat content and producing more 
accurate fat volume quantification than the ratio images with a simple thresholding method.  Future work will include 
incorporation of non-uniform prior, such as a Markov random fields (MRF) smoothness prior, to provide better fat 
content estimation and increase robustness to noise. 
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