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Obesity

A costly, growing epidemic ($51 billion in 1995 as per Wolf et al.)
Linked with diabetes, high blood pressure, and dyslipidemia
Both genetic and environmental factors are significant

BMI>30, CDC Behavioral Risk Factor Surveillance System 

17.7%1997
28.1%2007

Ohio BMI>30



Obesity: Genes and Environment

Why use rats and mice to study diseases linked to human obesity?
• Cost / sample size
• Patient compliance
• Uniform genetic background 
• Genetic engineering possible
• FDA requirements for drug approval

Genes

Environment

• Android vs. gynoid body shapes 
• 300+ possible quantitative trait loci
• Links to specific fat depots

Android Gynoid

• Diet 
• Exercise
• Related diseases and therapies



Magnetic Resonance Imaging (MRI) of Obesity

Why use MRI to study obesity?
Excellent soft tissue contrast
Non-invasive, no ionizing radiation
Acquisition and image processing techniques 
can be translated from MRI systems designed 
for rodents to systems designed for humans

T1W CHESS



Specific Aims

Thesis: ratio imaging is a robust image analysis technique for 
phenotyping rodent models of obesity using MRI
Developing the ratio imaging technique for phenotyping rats on 
a clinical MRI

Aim 1: Semiautomatic ratio image analysis

Modifying the technique for high field phenotyping of mice
Aim 2: Robust IDEAL reconstruction on a graphics card

Validating the high field measurements using a mouse model of 
dietary obesity

Aim 3: IDEAL Mouse Imaging at 7T



The big picture

How do we turn images into measurements and phenotypes?

Input Image Quantitative 
Output Image

Image 
Processing

Tissue volumes, 
fat concentrations



Aim 1: Semiautomatic ratio image analysis

A. Developing a robust image analysis technique
i. Enable rapid phenotyping via ratio imaging
ii. Remove signal intensity dependence on position in receiver coil, T1 

and T2, and the spatial chemical shift artifact
iii. Reduce inter-operator variability in tracing abdominal fat

B. Validation using SHR/SHROB rat model
i. Identify MRI phenotypes of both genetic and dietary induced 

obesity via subcutaneous and visceral fat depot volumes
ii. Also test for liver fat concentration differences



i. Semi-automatic segmentation

Measure visceral fat in the abdomen by tracing the 
abdominal wall (peritoneum) and then applying a 

threshold.



i. Coil Sensitivity Inhomogeneity

Coil inhomogeneity 
sensitivity in this image 
confounds analysis

Affects all images from 
MRI scanners
Not reproducible 
because animal will be 
positioned differently 
every time in the MRI
Difficult to apply 
thresholds to images

T1W CHESS



ii. Ratio Image Math

This model incorporates the signal intensity in the 
unsaturated image (IFW) with fat and water spin densities 
(ρ0,F and ρ0,W), T1 and T2 relaxation effects for both water 
and fat (T1F, T2F, T1W, and T2W), and a spatially varying 
receiver coil sensitivity pattern, or bias field (Λ). 
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ii. Ratio Image

Apply T1 and T2 corrections
Divide the two images 

÷

T1W

Fat+Water

CHESS

Fat only

=

Ratio Image

% Lipid



iii. Intra-operator variability

Ratio image analysis removed differences in 
manual segmentation of the abdominal cavity. 
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iii. Scan-rescan Reproducibility

Three separate acquisitions of the same SHROB rat showed 
no significant differences in measured visceral and 
subcutaneous adipose tissue volumes despite repositioning 
and reshimming (2% and 0.5% coefficients of variation, 
respectively).
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Spontaneously Hypertensive Rat (SHR/Kol) – lean control rats

SHR
294.5g

SHROB
529.5g

Obese Spontaneously Hypertensive Rat (SHROB/Kol) – established model of Metabolic Syndrome

SHR-DO
427.5g

Dietary obese SHR (SHR-DO) – SHR becomes obese on a milkshake supplemented diet

Insulin resistanceInsulin resistance
HypertensionHypertension
DyslipidemiaDyslipidemia

Hyperglycemia Hyperglycemia 

B. Aim 1 Validation: SHR/SHROB Rat model of 
Metabolic Syndrome



i. MRI Phenotypes in SHR/SHROB rats

Visceral adipose tissue is enlarged due to both dietary and genetic 
obesity (P<0.01 SHR-DO vs. SHR, and P<0.01 SHROB vs. SHR) 
But subcutaneous adipose tissue is enlarged only in dietary obesity 
(P=0.07 SHR-DO vs. SHR and P<0.01 SHROB vs. SHR)
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ii. MRI Liver Phenotypes in SHR/SHROB rats

Liver signal intensity in the 
ratio images showed a 
difference among SHROB rats 
(P<0.05 SHROB vs. SHROB*) 
SHR rats had less liver fat than 
SHR-DO or SHROB (P<0.05)
Suggests that dietary and 
genetic obesity both contribute 
to liver fat
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Aim 1: Conclusions

A robust image analysis technique was developed
Signal intensity dependence on position in receiver coil, T1 and T2, and 
the spatial chemical shift artifact were removed
Measured tissue volumes were reproducible despite repositioning and 
reshimming
Inter-operator variability in tracing abdominal fat was eliminated

The SHR/SHROB rat model demonstrated the utility and 
effectiveness of the technique

MRI phenotypes of both genetic and dietary induced obesity were 
identified with increased subcutaneous and visceral fat depot volumes
Differences in liver fat concentration were observed



Transition to High Field MRI

Why use a MRI scanner designed specifically for 
small animals?

Better SNR, higher resolution images, faster acquisitions
Devoted to research
Able to image mice (lower costs, more genetic variants)

Ratio image analysis still works 
Same image analysis from fat and water images

What new issues have to be addressed?
B0 field inhomogeneity
Higher resolution images → more data → slower 
reconstruction



B0 Field Inhomogeneity

Ψ map
(slice 8)

-1624 Hz

+50 Hz

• Field inhomogeneity causes failures in CHESS saturation
• Much worse at 7T on small animal MRIs than on low field human systems

Ψ map
(slice 9)
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Dixon Imaging
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3 Point Dixon Math
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Fat-Water Reconstruction

|F| Ratioψ|W|Input
3 images

Label Image

The ratio image |F|/|W+F| is used to measure 
tissue volumes as before

Outputs



Aim #2: Robust IDEAL reconstruction on a graphics card

Hypothesis: The processing speed and robustness of 
the IDEAL reconstruction can be improved

i. Vectorize IDEAL equations for speed and for 
graphics card (GPU) computation

ii. Use Brent’s method instead of Golden Section 
Search to reduce the number of iterations of the 
optimization

iii. Fix Ψ aliasing using weighted planar extrapolation



i. Graphics Cards: Your personal supercomputer

CalcUA can reconstruct a 1024x1024x1024 CT dataset in 67.4 s
FASTRA can reconstruct the same data in 52.2 s
Standard desktop PC takes at least 4 hours

CalcUA (University of Antwerp): 
• $5 million, built for CT reconstruction 
research in 2005
• Most powerful supercomputer in Belgium
• 256 AMD Opteron nodes (2 cores per node, 
2.4GHz)

FASTRA (University of Antwerp): 
• $10,000 in 2008
• Designed by graduate students
• 4 Nvidia 9800GX2 cards (128 
cores per GPU, 2x GPUs, 
1.5GHz)

Data from FASTRA’s public release on their website, http://fastra.ua.ac.be



i. IDEAL Reconstruction

Why are there two possible solutions for ψ? Consider a pixel with only one proton species.
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i. Vectorized IDEAL

Vectorization is required for GPU implementation
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i. Vectorization Results

• 1000 iterations at fixed values of ψ on a 512x256x3 dataset
• GPU ~50% speedup relative to CPU (24 s vs 45 s)
• Images downsampled to determine break-even point (6000 pixels)
• Completely novel, MRI GPU-based reconstructions have only been done for non-
cartesian k-space (ZP Liang at UIUC) and for k-t SENSE (Sorensen at CMIC in UK).
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ii. Golden Section Search

Idea: Start with a function f that has a minimum on 
the interval [a, b]. Choose two values x1, x2 with a 
< x1 < x2 < b, and then compare f (x1) and f (x2)

If f(x1) > f(x2) If f(x1) ≤ f(x2)

x2’=x2+(1+√5)/2*(b-x2) x1’=a+(1+√5)/2*(x1-a)



ii. Vectorized Golden Section Search

The scalar algorithm only has three operations:
Evaluate F(x) where x is the new point to test

The new point is given by the golden ratio (1+√5)/2≈1.61
So the objective function must be able to evaluate multiple values 
of x independently and in parallel.  Already done!

Compare F(x1) and F(x2) 
In the scalar case, use an IF statement. In vectorized case, use
logical indexing e.g. isLessThan = F(x1) < F(x2). isLessThan has 
one value for each entry in x1 which is 1 if the test was true and 0 
if false. All IF statements are entirely replaced by logical indices.

Rearrange x1, x2, F(x1), F(x1) depending on the comparison
Use logical indexing operations in vectorized algorithm
b(isLessThan)=x2(isLessThan); x2(isLessThan)=x1(isLessThan); etc



ii. Brent’s Method

Inverse parabolic interpolation is used to “jump” to the minimum of 
the residuals
Brackets are maintained and used for golden sections if the 
parabolic fit is unacceptable (e.g. outside brackets, step size too 
small or too big, or a nonconvergent loop is detected).
On average 3 fewer function evaluations than golden section search
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iii. Unaliasing ψ

Region growing algorithm initialized by operator (x0, y0)

For each (x,y) in SPIRAL(x0, y0)
Fit 2D planar model to currently solved pixels around ψ(x,y)
Extrapolate 10x10 neighborhood to get ψP(x,y) 
Compare ψP(x,y) to ψ(x,y) and ψ1(x,y) +/- 1/ΔTE , +/- 2/ΔTE 
Assign ψ(x,y) as the minimum difference in the list
Mark ψ(x,y) as solved



iii. Planar Extrapolation

(a) (b)(a) (b)

Novel contribution: apply a priori knowledge to planar 
extrapolation model to prevent erroneous fitting
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Use weighted average
instead of extrapolation



iii. Comparison of ψ unaliasing methods

New method (f) derives correct solution
Literature methods (c)-(e) are incorrect

(a) (b) (c) (d) (e) (f)(a) (b) (c) (d) (e) (f)



Aim #2 Conclusions

Vectorized IDEAL equations are faster
Iterations of the optimization are reduced by 
Brent’s method 
Ψ aliasing is fixed using weighted planar 
extrapolation



Aim #3: IDEAL Mouse Imaging at 7T

Hypothesis: IDEAL is more robust than CHESS for 
7T mouse imaging in dietary obesity model

i. IDEAL ratio images have better fat-water contrast 
than CHESS ratio images

ii. IDEAL is more robust in the presence of field 
inhomogeneity

iii. IDEAL accurately identifies phenotypes with lower 
errors than CHESS



IDEAL Imaging of a Mouse Model of 
Fatty Liver Disease at 7T

12 C57BL/6J
mice

60 kcal% fat diet

10 kcal% fat diet

MRI
Compare adipose tissue 
depots volumes and liver 

fat content

MRI phenotypes

Validation

Histology and chemical lipid 
measurement = standard 

techniques

JAX Diet-Induced Obesity Service

Weaned at 6 weeks

At 29 weeks



IDEAL Imaging of a Mouse Model of 
Fatty Liver Disease at 7T, images

|F| Ratioψ|W|Input Label Image

The Ratio Image is used to create a Label Image, 
which is used to measure tissue volumes

Visceral adipose tissue (dark gray): Ratio>0.50 and inside abdominal cavity
Non-visceral adipose tissue (white): Ratio>0.50 and outside abdominal cavity



i. Fat-Water Contrast to Noise Ratio

Input |W| |F|

CNR 
28.6±4.7
17.4±6.1
21.0±4.8

8.8±2.3 43.8±7.6

Unsat. Fat sat.

31.0±3.5

• IDEAL CNR is better than CHESS fat saturation
• CHESS suppression is unreliable

30.9±4.1

IDEAL CHESS



ii. Adipose Tissue Volume Phenotypes
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ii. Adipose Tissue Volume Phenotypes, 2

HF LF

Non-visceral adipose tissue (cm3)
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P<0.001 P>0.10

CHESS is not even able to detect a statistically significant difference



iii. Identifying Phenotypes in Liver

High fat diet mouse 

Liver measurements

IDEAL: 27.2%±5.4% 

CHESS: 37.2%±8.3%

Chemical lipid 
extraction:
220.6 mg triglyceride 
per g liver. 

Low fat diet mouse 

Liver measurements

IDEAL: 3.1%±1.7% 

CHESS: 84.4%±15.2%

Chemical lipid 
extraction:
13.4 mg/g

IDEAL 
ratio 

image

IDEAL 
ratio 

image



iii. Liver Validation
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Aim #3 Conclusions

IDEAL is more robust than CHESS imaging
CNR is better
Handles wide range of B0 inhomogeneity
Standard deviation of tissue volume measurements 
were lower as measured by IDEAL than by CHESS in 
the mouse study



Conclusions

Ratio imaging is a robust image analysis technique for 
phenotyping rodent models of obesity using MRI
The ratio imaging technique was used for phenotyping rats on a 
clinical MRI scanner. MRI phenotypes included liver fat 
accumulation and enlarged visceral and subcutaneous adipose 
tissue depots.
The IDEAL reconstruction was implemented on a graphics card 
with a 50% reduction in processing time
The ratio imaging technique was validated using a mouse model 
of dietary obesity. Using IDEAL instead of CHESS imaging 
resulted in lower errors and more accurate measurements
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