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PHENOTYPING RODENT MODELS OF OBESITY USING MAGNETIC 
RESONANCE IMAGING 

 
Abstract 

 
 

DAVID HERBERT JOHNSON 
 

The emergence of dedicated, small animal imaging systems provides an excellent 

opportunity to study obesity using the rat and mouse models which will be critical to 

increasing our basic knowledge as well as deriving new treatments. MRI is well suited 

for quantifying fat depots (e.g., visceral, subcutaneous, hepatic, muscular) and for helping 

to determine the role of genetic, environmental, and therapeutic factors on lipid ac-

cumulation, metabolism, and disease. Assessment of lipid depots is important because of 

the linkage of visceral and ectopic depots to insulin resistance, vascular disease, etc.  

The importance of making reproducible imaging measurements can never be 

underestimated when conducting a study of many animals, and we demonstrated that 

ratio imaging enables reliable quantification even on a human clinical 1.5T MRI scanner. 

Scan-rescan variability and intra-operator variability were each reduced to a 2% 

coefficient of variation or less when the semi-automatic ratio image analysis was used. 

Receiver coil signal intensity inhomogeneity of over 200% across the field of view was 

flattened to less than 3% variation by ratio imaging. Using the SHR/SHROB rat model of 

dietary and genetic obesity, we found a novel image phenotype which showed that 

visceral adipose tissue depots are increased in both genetic and dietary obesity, but 

subcutaneous adipose tissue is uniquely linked to dietary obesity, at least in this model.  
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A method for robust fat-water reconstruction was developed on a small animal, 

high field scanner, where field inhomogeneity is far worse than on a clinical scanner. 

Severe field inhomogeneity was corrected by adapting the Iterative Decomposition and 

Echo Asymmetry with Least squares estimation (IDEAL) to the high field scanner. 

IDEAL reconstruction time was reduced by 50% when a graphics card was used in 

calculating a novel, vectorized form of the IDEAL equations. The reconstruction was also 

improved by applying a priori constraints to the linear extrapolation and fitting of the 

field inhomogeneity parameter, which removed error propagation across the image.  

MRI phenotypes were identified and validated on the high field scanner using an 

important, well-established mouse model of dietary obesity. C57BL/6J mice on high and 

low fat diets were imaged using the new IDEAL technique, and the semi-automatic ratio 

image analysis was used to show significant differences in visceral and subcutaneous 

adipose tissue volumes. High fat diet mice had significantly higher concentrations of liver 

lipids than the low fat diet mice whether measured by IDEAL (P=0.002) or by a chemical 

assay (P<0.001). In contrast to IDEAL, CHESS measurements failed to detect reliable 

differences in either tissue volumes or liver fat content, demonstrating the clear 

superiority of the IDEAL technique for phenotyping mice on the high field scanner. 
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Chapter 1 Introduction 

1.1 Obesity 

Obesity has reached epidemic proportions, and it is associated with many serious 

medical conditions, including high blood pressure, diabetes, heart disease, stroke, 

gallbladder disease and cancer of the liver, breast, prostate, and colon. Obesity has been 

shown to have a substantial negative effect on longevity, reducing the length of life of 

severely obese people by an estimated 5 to 20 years (1). In fact, despite a 1,000 year trend 

of increasing life expectancy, Olshansky et al. predict that obesity might actually reduce 

life expectancy in the US in coming years (2). In short, obesity is rapidly becoming 

perhaps the major health concern in our society today.  

It has long been observed that persons with an android (apple) body shape are at 

greater risk to develop cardiovascular disease than those with a gynoid (pear) body shape 

(3,4). More recently, this observation has been related to visceral versus subcutaneous 

adipose tissue, with the presence of visceral adipose tissue being related to diseases such 

as insulin resistance, type II diabetes, and cardiovascular disease (5). Visceral fat is 

frequently associated with impairment of glucose and lipid metabolism, and even in non-

obese humans, it is correlated with metabolic risk factors for insulin resistance, elevated 

blood lipids, and heart disease (6). More recent studies are highlighting a relationship 

between specific fat depots and metabolic syndrome. Fat accumulation outside of adipose 

tissue is correlated with deleterious metabolic effects. These ectopic depots include 

muscle and liver, and accumulation of fat in cells of the liver and muscles has been linked 

to insulin resistance (7,8). The mechanism is not well understood, but measuring lipid 

concentration in liver and muscle could provide early insight into these key metabolic 
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tissues. Currently, diagnosis of type II diabetes is based on the fasting blood glucose 

level, but this may be observed later than the accumulation of ectopic lipid (7).  

MRI can uniquely measure both the volume of adipose tissues and the 

concentration in ectopic fat depots, which could be important diagnostic targets. Rodents 

provide a unique opportunity to study effects of genes and controlled environments on 

obesity, insulin resistance, and diabetes (9).  We compared lean spontaneously 

hypertensive rats (SHRs) on a chow diet, dietary obese SHRs on a high fat, high sucrose 

diet, and genetically obese SHROB on a chow diet. We also compared C57BL/6J mice 

on high and low fat diets. Together, these cohorts provide an opportunity to compare 

genetically obese and dietary obese rodents with lean controls. 

1.2 Genetic Factors and the Metabolic Syndrome 

Genetic influences on obesity are complex, and investigators are studying a 

variety of genetically modified mouse and rat models which are either prone or resistant 

to obesity. Obesity-related genes have been explored using chromosome substitution 

strains so as to identify the genes which influence the development of obesity (10). 

Chromosome substitution strains can easily create 100’s of different genetic mouse 

strains to examine the genetic factors involved in lipid metabolism. A fast lipid 

distribution imaging workup is critical to identifying significantly different mouse strains 

and screening candidate obesity genes. Our target MRI acquisition time is greatly 

reduced, giving us a throughput sufficient to use MR as a standard phenotyping 

measurement for gene discovery. In addition, a full lipid work up would be most helpful 

in evaluation of diet, drugs, and other interventions for diabetes and obesity. For 

example, it was conjectured that orlistat, a reversible inhibitor of gastric and pancreatic 
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lipase which blocks absorption of approximately 30% of dietary triglycerides, might have 

special benefit in fatty liver accumulation and NASH. However, this was not born out in 

a recent study, which used liver biopsy for assessment (11). With our technology, future 

preclinical studies can routinely include depot-selective data, a capability that may help 

assess drug action (12). 

Currently the following four clinical abnormalities are the criteria for diagnosis of 

Metabolic Syndrome: obesity (body mass index (BMI) > 30 kg/m2), non-insulin 

dependent diabetes mellitus (fasting glucose > 100 mg/dL), hypertension (blood pressure 

> 130/85 mm Hg), and hyperinsulinemia (elevated fasting insulin). It is difficult to 

establish cause and effect, but it has been observed that weight reduction can improve 

glycemic control, reduce blood pressure, and reduce cholesterol levels (13). The 

HERITAGE epidemiological study implicated visceral fat as a risk factor independent of 

total body fat (14). Note that a newer definition of obesity (waist circumference above 40 

inches in men and 35 inches in women) was created to be a surrogate for measuring 

visceral adipose tissue (15). More recent studies are highlighting a relationship between 

specific fat depots and metabolic syndrome. Fat accumulation outside of adipose tissue is 

correlated with deleterious metabolic effects, which motivates the use of imaging 

techniques.  

1.3 Imaging of Obesity 

Not only is obesity significant, the role of imaging in obesity is also significant. 

MRI can unambiguously follow lipid accumulation/depletion in depots (visceral, 

subcutaneous, muscle, liver, etc.). As compared to biopsy/dissection and biochemical 

analyses, MRI has the advantage of being non-invasive and less biased from tissue 
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sampling. There are clear connections between lipid accumulation in various depots and 

complications. For example, it has long been observed that visceral fat is “worse” than 

subcutaneous fat with regards to development of diabetes, cardiovascular disease, etc. 

Emerging evidence suggests that the ectopic fat depots are even more closely linked to 

complications; e.g., lipid accumulation in muscle and liver is a leading indicator for 

diabetes and metabolic syndrome (16,17). There are definite genetic linkages to fat 

distribution (18-20).  

In preclinical animals, MRI is favored over the traditional method of dissection, 

due to the excellent fat-water contrast, sensitivity, and reproducibility (21). Fat tissue 

volume measured by MRI correlates well with tissue wet weight determined by gross 

dissection (22-24). Tang et al. performed a longitudinal study of obese and aging rats and 

found that both MRI and dissection accurately assessed changes in adipose tissue, liver, 

and skeletal muscle weight (25). However they found that MRI systematically 

underestimates dissection whole body weight by 6%, which they attribute to the absence 

of the tail and hair weights (up to 3%). They note that acquiring thinner slices brings the 

weight estimated by MRI closer to that of dissection, which supports the hypothesis that 

the underestimation may be instead due to the partial volume effect, an imaging artifact 

caused by anisotropic voxels. Ballester et al. established that this artifact may cause an 

underestimation of volumes by 20-60% in brain images (26). The effect on adipose tissue 

volume is unknown, but ectopic fat depots share the irregular shape and high surface area 

of brain structures (e.g. white matter). 

Many groups have used in vivo imaging techniques to probe lipid metabolism in 

specific animal models of obesity and diabetes (22,27-33). However, the majority of 
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these studies have provided only a single imaging assessment such as total adipose tissue 

content or intra-myocellular lipid content. Very few, if any, studies have been conducted 

that provide a more comprehensive array of lipid assessments including adipose tissue 

compartmental volumes and ectopic lipid fractions with the aim of providing a more 

complete phenotyping of animal strains. The biggest resistance to performing these 

studies has been the expensive nature of imaging in general and concerns about the 

reproducibility of the measurements. We overcame this limitation by developing the 

fundamental imaging and analysis techniques that in combination provide a rapid and 

robust characterization of adipose tissue and ectopic fat stores in mice and rats. 

1.4 CT, X-Ray, and Ultrasound Applied to Obesity 

Computed Tomography (CT) and Dual-Energy X-Ray Absorptiometry (DEXA) 

are two other modalities for assessing whole body fat depots. CT has been used in many 

studies of human obesity, but fewer studies have investigated CT imaging of obese 

rodents. The main advantage of using CT is that the signal intensity is directly related to 

the attenuation coefficient in Hounsfeld units (HU). After calibration, CT images can be 

reproducibly thresholded due to the lower attenuation of fat (-190 to -30 HU) as 

compared to skeletal muscle (30 to 100 HU, (34)). Janssen et al. measured visceral 

adipose tissue in both black and white humans using CT and reported standard errors 

ranging from 2.3 to 8.0 cm2, in agreement with body mass index and waist circumference 

(35). Reductions in CT adipose tissue volume measurements were found to correlate well 

with reductions in body mass index and waist circumference after a 20 week exercise 

program. Coefficients of variation in CT-based measurements of adipose tissue volumes 

are smaller than MRI-based measurements, possibly due to the shorter acquisition time 
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and thus reduction in motion artifacts (36). Ross et al. showed that MRI volumes 

correlate well with CT volumes in rats (37). The CT signal intensity can also be used to 

quantify the concentration of fat in ectopic depots (e.g. liver and muscle) assuming a 

linearity intensity values from mixing of the fat and water tissue classes. Disadvantages 

of CT include exposure to ionizing radiation, which may impact longitudinal studies.  

Dual-Energy X-Ray Absorptiometry (DEXA) is a form of projection X-ray 

imaging where images are acquired using both a high energy beam and low energy beam. 

The primary application of DEXA is in measuring bone mineral density by subtracting 

the two images (34). Body composition analysis (e.g. fat concentration in skeletal 

muscles) is possible by using different energy levels to maximize fat-water contrast. The 

radiation exposure is much lower than CT imaging because only one projection is 

typically acquired. Unfortunately, DEXA is limited by the single projection acquired. A 

number of assumptions about body composition (e.g. bone mass and other calibration 

parameters) are required to model the image intensities, and subjects with widely varying 

body thicknesses may result in inaccurate measurements. 

Ultrasound (US) and anthropomorphic measurements are also used in studying 

obesity, but there are significant challenges associated with them. The main advantage of 

these techniques is that the cost is much lower than CT or MRI scans. Unfortunately, 

applications to whole body fat assessment are limited. Skin calipers cannot accurately 

measure very thick fat folds, such as those found in obese patients, and the combination 

of anthropomorphic measurements has limited value in predicting visceral and 

subcutaneous adipose tissue volumes (34). Ultrasound has the advantage of being able to 

measure the thickness of most skin depots, but the fat-water contrast in the images is poor 
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due to the only slight differences in acoustic impedance between adipose tissue and 

muscles. Interpretation of speckle patterns is required to distinguish tissues, which is not 

a reliable operation even among trained users (34). A study of morbidly obese humans 

before and 1 year after bariatric surgery found that ultrasound was only weakly correlated 

with CT visceral adipose tissue area (R2=0.38) (38). A further challenge is the limited 

depth of penetration, which must be traded off against the resolution of the image 

because higher frequency waves do not penetrate as deeply into tissue. This problem is 

exacerbated when studying rodents instead of humans, as a nearly 10X increase in 

frequency is required to obtain equivalent anatomical resolution, but depth of penetration 

is reduced correspondingly. A recently developed ultrasound system for mice can obtain 

very high resolution images (57 μm x 57 μm x 40 μm) when operating at 40 MHz, but the 

focal depth is only 6 mm (39). The carrier frequency and thus image resolution must be 

significantly reduced to reach any posterior anatomical structures, and even then the 

presence of any air (e.g. the lungs) will prevent the signal echoes from returning to the 

transducer. The inaccuracies in ultrasound and anthropomorphic measurements prevent 

these modalities from making significant contributions to obesity research. 

1.5 MRI Applied to Obesity 

MRI has a number of advantages for studying obesity. One important advantage 

is that no ionizing radiation is necessary to acquire images, unlike CT or X-Ray. But MRI 

is also well-known for better soft tissue contrast than other modalities (34). Fat has a 

much shorter longitudinal relaxation time (T1) than most other tissues, and endogenous 

contrast between adipose tissue and most other tissues in MR images can therefore be 

created simply by using a short repetition time (TR) (40). A variety of additional 
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acquisition strategies unique to MRI can be used to enhance fat-water contrast (41). A 

preparation of inverting the signal magnetization prior to acquisition can be used to 

provide fat-water contrast via manipulating the delay between inversion and acquisition. 

Contrast is based on the longitudinal relaxation time, and either fat or water can be nearly 

eliminated from the image. Unfortunately, inversion recovery increases the minimum 

acquisition time and unnecessarily reduces SNR in the images because eliminating one 

species will necessary also reduce the signal in the other from overlap in the fat and water 

recovery curves.  

Instead of utilizing T1 differences between fat and water, their distinct precession 

frequencies can be used to create contrast. Chemical shift selective (CHESS) pulses can 

be used to apply an off-resonance excitation and spoiling to remove fat signals (42,43). 

Alternatively, the CHESS pulse can be on-resonance to remove the water signal. While 

this technique works well when the main field is well-shimmed, it fails outside the 

shimmed volume and also in locations of field inhomogeneity due to anatomical 

structures (e.g. air-tissue interfaces). The main concern of using CHESS pulses is the 

likelihood of failure even inside a single image, which limits the circumstances under 

which they can be considered useful for quantitative measurements. These failures can be 

addressed by separating fat and water on the basis of the measured phase in each pixel, as 

described by Dixon (44). Many phase-based mathematical models require at least one 

additional image to estimate and remove the field inhomogeneity artifact (45), but the 

additional scanner time can used to increase the SNR of the estimated fat and water 

images. Adoption of Dixon-like models has been slowed due to the complexity and 
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unreliability of reconstruction algorithms, especially the requirement for phase 

unwrapping.  

A number of image artifacts must be addressed to make quantitative 

measurements. Group comparisons in an animal study are not reliable without addressing 

a number of MRI artifacts that affect quantification. One example is that the image signal 

intensity varies in the image with the distance to the receiver coil, which is frequently 

referred to as a bias field. Signal intensity bias fields confound the post-processing image 

analysis used to measure volumes. For example, a threshold may be used to separate fat 

from water in T1-weighted images. Taking the ratio of two images is the best solution for 

canceling the bias field artifacts in MRI, and we investigated the beneficial effects of 

ratio imaging on scan-rescan reproducibility, intra-operator image segmentation 

variability, T1 and T2 corrections, and partial volume effects. Previous studies in human 

and rodent obesity have not addressed all of these artifacts or their reduction via ratio 

imaging.  

Another major problem is the chemical shift artifact, which confounds 

quantitative analysis of gray level values in MR images because the fat and water signals 

are spatially misaligned (i.e. shifted). The shift can be predicted by MR physics and 

removed in post-processing via image registration. The current trend in MRI is to 

increase SNR by using higher field strength magnets. The chemical shift artifact becomes 

worse on these high field scanners, and therefore post-processing corrections become 

even more important. An even bigger problem is that the main field (B0) becomes much 

more inhomogeneous on high field scanners, which motivates the development of robust 
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B0 correction algorithms. Even after B0 inhomogeneity has been removed, it is still 

important to correct the other image artifacts to produce robust measurements. 

The effects of these artifacts can be expressed in an equation for the signal 

intensity based on the solution to the Bloch equations for the spin echo experiment. At 

the coordinates (x,y), the signal intensity in the unsaturated image (IFW) has fat and water 

spin densities (ρ0,F and ρ0,W), T1 and T2 relaxation effects for both water and fat (T1F, 

T2F, T1W, and T2W), and a spatially varying receiver coil sensitivity pattern, or bias 

field (Λ). The fat and water spin densities are misaligned along the frequency encoding 

axis (x) due to the chemical shift. Using the coordinate system of the fat signal as a 

reference, the water signal is uniformly shift along the frequency encoding axis by Δx 

pixels. 

 

/ 1 / 2 / 1 / 2
0, 0,( , ) ( , ) ( , )(1 ) ( , ) ( , )(1 )TR T F TE T F TR T W TE T W

FW F WI x y x y x y e e x x y x x y e eρ ρ− − − −= Λ ⋅ − + Λ + Δ ⋅ + Δ −  (1.1) 

If the fat and water components could be measured separately, the T1 and T2 

relaxation effects could be removed and image analysis could proceed from Eq. (1.1). 

However, the bias field (Λ) would still confound the analysis of signal intensities. Instead 

of relying on just one image, the ratio of two images can be used to cancel the bias field 

as well as enable quantitative analysis.  

1.5.1 Fat-water Separation Techniques 

The principal acquisition strategies for generating ratio images are CHEmical 

Shift Selective imaging (CHESS) (43), the IDEAL (Iterative Decomposition and Echo 

Asymmetry with Least squares estimation) method (46-51), Multi-Point Dixon (MPD) 

methods (45,52) and spectral excitation techniques (42,43). The MPD techniques are 
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typically implemented in rapid imaging schema such as steady state pulse sequence 

(53,54) which can dramatically reduce the time to acquire the data sets required to 

generate separate fat and water images. More importantly, various image reconstruction 

methods have also been developed to correct for variation in the main magnetic field, 

which can be extremely deleterious on high field MRI scanners (55). These corrections 

are a significant advantage over spectral excitation techniques and are essential for 

accurate quantification of lipid volumes. 

The Dixon methods and IDEAL require the acquisition of images with several 

distinct fat-water phase differences. A mathematical model for the relative phase between 

fat and water is used to estimate each component, and a B0 correction may also be 

included. For example, the 3-point Dixon (3PD) method acquires two images with the 

same fat-water phase to estimate ΔB0 and an additional image where fat and water have 

opposing phases (Figure 1-1). In comparison, IDEAL uses three equally spaced but 

asymmetric echo times about the unit circle which maximize the SNR of the final fat and 

water estimates (47). The IDEAL method is also distinct from Dixon methods because 

the observed signals are fitted in a least-squares sense rather than using an analytical 

solution of equations. 
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Figure 1-1. 3 Point Dixon vs. 3-Point IDEAL 
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A comparison of different acquisition 3-point fat-water estimation techniques. The 3-point IDEAL 
technique uses a combination of asymmetric echo times for SNR efficiency, whereas the 3-point Dixon 
method uses symmetric echo times to make formulating the underlying equations simpler. 

Both of these methods perform a B0 correction, but IDEAL does not use phase 

unwrapping, which is a difficult and error-prone operation. Research on phase 

unwrapping has been performed for over 20 years, and yet no general, reliable solution is 

available for MRI (56). In contrast, a number of solutions for making accurate IDEAL 

reconstructions have been explored. Generally, the correct solution will have a smooth 

B0 map. Region growing with linear extrapolation is one technique that can solve some 

images (48). Downsampling has been used to reduce the effect of image noise on finding 

the correct solution (51). Exhaustive evaluation of a discrete set of possible solutions in 

each pixel using a Markov-Random Field to reward smoothness is another potential 

answer (57). There is still room for improvement among all these techniques, especially 

when the B0 inhomogeneity undergoes rapid spatial changes. 

1.6 General Purpose Computing on Graphics Cards 

IDEAL is a robust fat-water reconstruction technique, but it is computationally 

expensive because three or more TEs are acquired, tripling the data to be processed. 

Datasets can easily reach hundreds of megabytes, and the processing time can be 20 

minutes or longer in some implementations (e.g. Matlab). However, the reconstruction 

algorithm is fundamentally the same in each pixel, which implies that the operations can 
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be carried out in parallel. This type of data-parallel reconstruction is appropriate for using 

the highly parallel graphics processor unit (GPU). The Nvidia CUDA architecture makes 

it possible to realize highly parallel algorithms on commodity graphics cards, which may 

have hundreds of individual processor units with fast memory access speeds. Other MRI 

reconstruction algorithms, e.g. SENSE, have recently been shown to be much faster when 

implemented on graphics hardware (58). Non-Cartesian reconstructions have been speed 

up on the GPU by a factor of 21 (59). The speed advantages of using a GPU will become 

more important as the trend towards higher resolution images continues to produce larger 

MRI datasets, and we showed that significant speed increases are possible for the IDEAL 

algorithm when vectorized math and a GPU are utilized. 

1.7 Overview of the Dissertation 

This dissertation focuses on developing MRI techniques for practical studies of 

obese rats and mice. The specific aims, one per chapter, address concrete problems. The 

final chapter provides conclusions and a discussion of possible future work. 

1.7.1 Semi-automatic Ratio Image Analysis 

Chapter 2 explores the use of a clinical human scanner and CHESS imaging in 

studying a group of obese rats. The semi-automatic image segmentation algorithm 

developed in this chapter forms the basis for ratio image analysis, a critical technique for 

conducting reproducible rodent MRI experiments. Bias field, T1, T2, and partial volume 

effects are characterized and corrected. Scan-rescan variability and intra-observer 

variability are demonstrated to be acceptable when ratio imaging is used. Distinct MRI 
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phenotypes are identified in the rats and associated with dietary obesity and genetic 

obesity. 

1.7.2 Robust Fat-Water Reconstruction on a Graphics Card  

Chapter 3 demonstrates a number of improvements to IDEAL reconstruction. The 

IDEAL equations are vectorized and implemented on a commodity graphics card. 

Reconstruction time on the GPU is decreased to 50% of CPU-only reconstruction time. 

Brent's method is applied to the IDEAL reconstruction, and a reduced number of function 

evaluations are required to solve almost every pixel in the image as compared to golden 

section search. The linear extrapolation of field inhomogeneity is shown to be much more 

robust when the slope of the 2D fit is restricted to avoid propagating errors throughout 

the image.  

1.7.3 IDEAL Mouse Imaging on a High Field Scanner 

Chapter 4 extends semi-automatic image segmentation algorithm to high field, 

small animal MRI and IDEAL imaging instead of CHESS imaging. The robust IDEAL 

method of Chapter 3 is applied to an experiment with a well-known mouse model of 

dietary obesity. MRI phenotypes are validated and compared to body weight, histology, 

and chemical lipid extraction. Oil/water phantom experiments are used to validate T1 and 

T2 corrections in the IDEAL framework.  

1.7.4 Conclusions and Future Work 

Chapter 5 summarizes the results and provides a discussion of possible extensions 

of the work. New opportunities are discussed in the context of the current work. 
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Chapter 2 Semi-automatic Ratio Image Analysis 

2.1 Background 

A clinical 1.5T MRI scanner can be used to phenotype obese rodents, and there 

are a number of good reasons to investigate the use of a low field scanner. Not every 

research center has access to a high field, small animal scanner, and thus there are more 

opportunities to perform routine animal studies on a clinical scanner. The field 

inhomogeneity is less of a problem when the field of view for a rat or mouse is less 

because the scanner is homogeneous over a much larger volume. Relaxivity constants 

(e.g. T1, T2) are well known at 1.5T, and corrections for T1 and T2 variations have been 

explored on 1.5T systems before (42,60). Finally and most importantly, the analysis of 

ratio images developed on a low field scanner will also be applicable to ratio images 

acquired on a high field scanner. Many artifacts are common to both high and low field 

scanners, and post-processing techniques can be reused when extending the methods 

from a low field scanner to a high field scanner. 

When planning a study of rodent obesity, there are several MRI-specific artifacts 

that confound MRI measurements and increase errors. Receiver coil sensitivity 

inhomogeneity is a problem with whole body imaging, which is needed to measure the 

entire subcutaneous and visceral fat depots. The spatial non-uniformity of the receiver 

coil confounds image analysis when a threshold is used to separate fat from water in T1-

weighted images. The choice of the threshold should be derived to avoid picking a 

different threshold in each dataset. An operator will need to trace the abdominal cavity to 

separate the visceral adipose tissue depot, and variations between multiple operators 

should be minimized to increase the reproducibility of this technique. The ratio of two 
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images can cancel the receiver coil sensitivity inhomogeneity and enable robust and 

semi-automatic processing.  

We present an image acquisition and analysis method which eliminates technical 

limitations including the signal intensity bias field, spatial chemical shift artifact, and 

operator bias due to thresholding. Our semi-automatic algorithm enables rapid 

phenotypic analysis of rat MRI images by acquiring two co-registered image sets 

followed by image processing and parameter estimation to correct these artifacts. The 

only difference between the two images sets is the selective suppression of the water 

signal, which is deliberately spoiled by the use of CHemical Shift Selective (CHESS) 

pulses (43). Volumes of adipose tissues and other organs are computed after manual 

segmentation of the abdominal wall and image classification by thresholding. The 

intensity values in the ratio image are used to correct partial volume effects. 

We use MRI to assess visceral and subcutaneous fat for genetically obese SHROB 

rats and dietary obese SHR rats as compared to lean SHR control rats. We first report 

theoretical aspects of ratio imaging with a mathematical model for the signal intensity in 

the ratio image. This is followed by the semi-automatic image segmentation algorithm 

developed to measure volumes of subcutaneous and visceral adipose tissue. We next 

present the results of applying this methodology to a study of genetic and dietary obesity. 

Finally, we discuss the advantages and tradeoffs of ratio imaging. 
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2.2 Methods and Materials 

2.2.1 Theory 

We solved the Bloch equations for the signal intensity in both the water-saturated 

and unsaturated images and developed a model for the signal intensity in the ratio image. 

At the coordinates (x,y), the signal intensity in the unsaturated image (IFW) has fat and 

water spin densities (ρ0,F and ρ0,W), T1 and T2 relaxation effects for both water and fat 

(T1F, T2F, T1W, and T2W), and a spatially varying receiver coil sensitivity pattern, or 

bias field (Λ). We assumed that saturated lipid protons dominate the fat signal and 

neglect unsaturated lipid protons.  

 / 1 / 2 / 1 / 2
0, 0,( , ) ( , ) ( , )(1 ) ( , ) ( , )(1 )TR T F TE T F TR T W TE T W

FW F WI x y x y x y e e x x y x x y e eρ ρ− − − −= Λ ⋅ − + Λ + Δ ⋅ + Δ − (2.1) 

The fat and water spin densities are misaligned along the frequency encoding axis 

(x) due to the chemical shift. Using the coordinate system of the fat signal as a reference, 

the water signal is uniformly shifted along the frequency encoding axis by Δx pixels. The 

theoretical shift was given by a calculation using the receiver bandwidth (BW), the on-

resonance frequency of water (γB0), and the spectral separation between fat and water 

(3.35 ppm) (61).  

 0 3.35ppmB
x

BW
γ ⋅

Δ =  (2.2) 

Assuming that all water spins are saturated with the CHESS pulse, the model for 

the intensity in the water-saturated image was IF.  

 / 1 / 2
0,( , ) ( , ) ( , )(1 )TR T F TE T F

F FI x y x y x y e eρ − −= Λ ⋅ −  (2.3) 

The spin density of fat was found from Eq. (2.3) by dividing the fat only image by 

the fat relaxation terms taken from the literature (T1F = 250 ms, T2F = 60 ms) (61). 
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 0, / 1 / 2

( , )
( , ) ( , )
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e e
ρ − −Λ ⋅ =

−
 (2.4) 

The spin density of water was found by subtracting Eq. (2.3) from Eq. (2.1) and 

dividing by the water relaxation terms (T1W = 900 ms, T2W = 50 ms) (61). 

 0, / 1 / 2

( , ) ( , )
( , ) ( , )
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e e
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−
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−
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A ratio image (Ir) was produced from dividing the fat spin density (Eq. (2.4)) by 

the total spin density (Eq. (2.4) + Eq. (2.5)). The water spin density was shifted Δx pixels 

by interpolation in the x axis. The bias field (Λ) was canceled by taking the ratio.  
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 (2.6) 

2.2.2 MRI Acquisitions.  

Two separate but co-registered image sets were acquired on a Siemens Sonata 

1.5T MRI scanner. T1-weighted spin echo images (TR/TE = 1240/13 ms, matrix = 

256x96x29 to 256x144x30, FOV = 200x82.5x58 to 220x123.75x60 mm, adjusted for rat 

size) were acquired with and without CHESS water suppression to generate both 

“fat+water” and “fat-only” image sets. The body coil was used for both RF transmit and 

receive for phantoms; a human head coil was used on rat studies. We did a specific 

experiment to test the ability of this methodology to eliminate large bias fields. A 

custom-made two-channel phased array coil (4” I.D.) was used with one array disabled to 

create a strong signal intensity variation for one dataset. A reduced receiver bandwidth of 

90 Hz/voxel was used to improve SNR and induce chemical shift artifacts. Four averages 
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were used to minimize respiratory artifacts in the absence of respiratory gating for 

rodents on the clinical scanner. 

Phantom Imaging Studies. To validate our ratio imaging method, images of a 3L 

plastic bottle filled with half soybean oil and half deionized water were created. The 

dynamic range of signal intensities in the ratio image was tested by rotating the oil-water 

meniscus in a rotated sagittal slice, which created a partial volume effect (as before 

except FOV=319x159.5x20 mm, matrix = 128x64x20, BW = 300 Hz/voxel, 10 

averages). A line profile of signal intensity in the ratio image was plotted along the 

meniscus. Three adjacent columns were averaged to improve the SNR. 

Animal Experiments. To test the effectiveness of this new methodology, we 

evaluated the genetically obese spontaneously hypertensive rat (SHROB (62)) in 

comparison to SHR lean littermate controls. Comparisons of the genetically obese rats 

(SHROB) to dietary obese rats (SHR-DO) provide new insights into metabolic syndrome 

when compared against a control of SHR on a normal diet. Commonly summarized as 

metabolic syndrome, the overlapping conditions of hypertension, obesity, insulin 

resistance, and physical inactivity all increase risk of cardiovascular heart disease (63).  

SHROB rats provide a striking model for metabolic syndrome in humans because it 

develops all of these conditions (64). We investigated the effects of diet and genetics on 

visceral and subcutaneous obesity, which are important diagnostic and therapeutic targets 

(65). Animal studies were conducted under a protocol approved by the Institutional 

Animal Care and Use Committee at Case Western Reserve University. 

To test the biological application of this technique, we chose a variety of ages and 

body weights among twelve genetically obese SHROB, six dietary obese SHR-DO, and 
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six non-obese SHR. Animals were scanned using the imaging protocol described above. 

The rats were anesthetized by 1.0-2.5% isoflurane and restrained within a rat-sized tube. 

Voxel sizes varied from 0.78x0.78x2mm to 0.86x0.86x2mm because the field of view 

had to be increased for the more obese rats.  

Measurement Reproducibility. We designed experiments to evaluate the 

variability of image acquisition and image analysis on adipose tissue quantification. 

Image analysis variability was assessed by comparing results from different operators on 

the same rodent images. Six operators measured visceral and subcutaneous adipose tissue 

volumes on a subset of animals using our software. Operators traced the abdominal cavity 

in all 28 slices of a SHROB water-suppressed dataset, saved the result, and then picked a 

threshold in the T1W image to separate muscles and other organs from adipose tissues. 

Tracing the abdominal cavity took approximately 25-35 minutes after a brief training 

session on a separate dataset. All datasets were processed in the semi-automatic ratio 

image analysis program (see below, Image Analysis and Visualization). Volumes of 

adipose tissues were computed both with user-chosen thresholds and alternatively with 

the semi-automatic image processing. Volume overlap fractions were calculated for each 

operator relative to the expert operator, who reviewed all of the segmentations and also 

segmented all of the other data sets.  

We quantified the degree of similarity between operators before and after the 

semi-automatic ratio image analysis method using the Dice Similarity Coefficient (DSC)   

 ( , ) 2
A B

DSC A B
A B
∩

=
+

 (2.7) 

The DSC measures the overlap between two sets, A and B, relative to their total 

size (66). A DSC above 0.7 indicates good agreement at least in some applications such 
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as psychological testing, and the maximum possible DSC of 1 indicates perfect 

agreement (67). We used the expert operator’s segmentation as the ground truth (A) and 

computed DSC’s for each of the five other operators (B) against it. 

A scan-rescan-rescan experiment was used to quantify instrumental and analysis 

variability in volume measurements. In a single session, a SHROB was scanned three 

times and repositioned each time between scans. The MRI scanner was allowed to run its 

internal calibrations (i.e. shimming and adjustment of Fourier Gain) each time. A single 

expert operator analyzed the images using the semi-automatic ratio image analysis 

program. Statistics were calculated using a test that corrects for the multiple comparison 

penalty (Tukey’s Honestly Significant Difference) in a freely available statistics package 

(the R Project for Statistical Computing (68)). P values below 0.05 were considered 

significant. 

IMAGE ANALYSIS AND VISUALIZATION 
 

We now describe the implementation of the semi-automatic ratio image analysis 

method, used to quantify volumes of adipose tissue depots. Briefly, the image analysis 

consisted of finding the appropriate alignment of the water signal with respect to the fat 

signal using image registration followed by calculation of the theoretical model for the 

signal intensity in the ratio image. The background air pixels were removed using 

morphological operations, and a label image was created to map each of the tissues (i.e. 

visceral adipose tissue, subcutaneous adipose tissue, and muscle/other organs). Partial 

volumes were corrected for each tissue type. Signal intensities were compared by 

manually placing small ROIs in the liver, muscle, adipose tissue, and kidneys in the ratio 
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images. Volume rendering was used to visually compare adipose tissue in different 

groups of rats. 

Image Registration. The misalignment of the fat and water signals was corrected 

using image registration. The exact shift depends on the combination of the off-resonance 

frequency of fat, receiver bandwidth (as shown in Eq. (2.2)), and macroscopic B0 field 

inhomogeneities. We therefore compared the theoretical shift to image registration of the 

estimated fat and water spin density images. Our initial estimate of the spatial fat water 

shift (Δx) comes from the scanner’s reported bandwidth and on-resonance frequency, 

which are recorded in DICOM tags. We used a receiver bandwidth of 220 Hz/voxel in 

acquiring all images, which gave a theoretical shift of 2.36 pixels. We found the optimal 

shift by computing mutual information between the estimated fat and water spin density 

images (Eq. (3), (4)) at offsets from +Δx to –Δx pixels by 0.01 pixel steps (Figure 

2-1(a)). Linear interpolation was used, and a special CV-LIN correction was applied to 

prevent so-called “scalloping” artifacts (69). Air pixels, as identified in label images 

described below, were not considered in calculations. We validated that the chemical 

shift artifact was due to the off-resonance frequency of fat, not field inhomogeneities. 

The maximum mutual information occurred at the theoretically predicted value of +Δx 

pixels. It was too slow to repeat the complete search for every dataset; instead the mutual 

information was calculated only for the theoretical values of +Δx and –Δx from Eq. (2.2). 

The offset with the higher mutual information was retained and used for a more accurate 

and slower piecewise cubic Hermite interpolation before recalculating the ratio image 

(70). After applying Eq. (2.6), a corrected ratio image (Figure 2-1-c) has sharper edges, 
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clearer intramuscular fat streaks, and a better delineation of the abdominal wall than that 

before alignment (Figure 2-1-b).  

Figure 2-1. Chemical shift artifact correction 
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(a) (b) (c)  
Alignment of the fat-only and water-only signals along the frequency encoding direction restores edges lost 
to the chemical shift artifact. CV-LIN helps to estimate optimal alignment based on mutual information (a). 
A large ‘scalloping’ artifact appears around whole integer shifts when linear interpolation is used. The use 
of CV-LIN removes the artifact, and the optimal solution becomes apparent at the maximum mutual 
information. The prediction of the optimal alignment from the MRI equations is shown (a, vertical bars). 
Visual inspection confirms the prediction of mutual information. The aligned ratio image (c, +2.36 pixel 
shift) is superior to the unaligned ratio image (b, no shift). Edges at adipose tissue/muscle boundaries are 
restored around the abdominal wall, and intramuscular fat depots become more apparent. 

Semi-automatic Image Segmentation. We expedited the measurement of 

visceral and subcutaneous adipose tissue by automating it as much as possible. The only 

manual input was tracing the abdominal cavity in all slices of the water-suppressed 

dataset using Analyze (AnalyzeDirect, Inc., Overland Park, KS). The segmentation was 

saved as a label image with regions inside and outside the abdominal wall, which was 

used later to separate visceral and subcutaneous adipose tissue, respectively. Respiratory 

motion ghosting artifacts and background noise / air were automatically eliminated by 

creating a mask image using an in-house Matlab program (The Mathworks Inc., Novi, 

MI) (Figure 2-2). Four averages were taken in the image acquisition, effectively reducing 

the ghost signal intensities. Air voxels were removed from all images by measuring the 

mean and standard deviation of a 10 pixel x 10 pixel background region in a water-only 
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image (Figure 2-2-c). A global lower bound threshold (μ+3σ) was applied to remove air 

in all slices. This threshold also had the effect of thresholding out some of the weaker 

ghost artifacts (Figure 2-2-d). Remaining air artifacts were removed using the observation 

that they tended to occur in random positions between slices. We used a 3D 

morphological opening on each slice with a 2x2x2 structural element to remove small 

islands of voxels outside the animal. A morphological closing operation with a 2x2x2 

structural element removed small holes inside the animals (Figure 2-2-e). In some 

instances, there were remaining air artifacts. The body of the rodent was segmented using 

region growing and any unconnected voxels were deemed to be air. (Figure 2-2-f). In 

some limited cases it was necessary to manually fix remaining artifacts (Figure 2-2-g). 

Flood fill algorithms are an alternative approach to fixing holes in the mask images, but 

we found that a simple manual correction was quick and sufficient. At this point, three 

regions can be identified: external air, interior to the abdominal wall, and exterior to the 

abdominal wall. 
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Figure 2-2. Semi-automatic ratio image segmentation 

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)  
Semi-automatic image processing is used to create a mask. The (fat+water) (a) and fat-only images are 
transformed into estimates of fat-only and water-only signals as per Eq.  3 and 4 (b, c, resp.). The water-
only signal is thresholded to remove air (d). Ghosting artifacts are substantially reduced following 
morphological opening and closing (e). Disconnected ghosts of high signal are removed by a region 
growing seeded from the center pixel of the image volume (f). A human observer edits the image map to 
fix any remaining problems (g). Finally, the mask is applied to the water only signal to show how artifacts 
have been removed (h). 

Ratio images were used to identify adipose tissue using a fixed threshold (see 

below) or, optionally, a user defined threshold. Voxels above the threshold were labeled 

adipose tissue in the ratio image (Figure 2-3-a). Voxels inside and outside the abdominal 

cavity were labeled as visceral or subcutaneous adipose tissue, respectively. In some 

limited cases it was necessary to manually remove the interior of bones which have a 

high fat content and can be misclassified. Peristalsis and metal residues in fecal matter in 

the gastrointestinal tract were eliminated by excluding all voxels in the ratio image with 

values > 1.0. At this point, we have label images consisting of air; visceral adipose tissue; 

subcutaneous adipose tissue, including some intramuscular fat streaks; muscles/organs 

inside the abdominal cavity, and muscles/organs outside the abdominal cavity (Figure 

2-3-b). Volumes were computed without partial volume correction by counting the 
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number of voxels in each label and multiplying by the volume of a single voxel in ml. 

Volumes were computed with partial volume correction as described later.  

Figure 2-3. Ratio image used for segmentation and partial volume correction 

(a) (b) (c)(a) (b) (c)
 

Creation of a label image is used by classification and partial volume correction, shown here in a 
genetically obese SHROB. The ratio image (a) is classified into four classes showed in (b): subcutaneous 
adipose tissue (white), and visceral adipose tissue (dark gray), muscle/non-adipose tissues (light gray), and 
air (black). Partial volume correction is performed both on subcutaneous and visceral adipose tissue 
separately by finding voxels at the boundaries of tissues. The voxels of (b) affected by 3x3 erosion and 
dilation are labeled for adipose tissue partial volume correction as shown in (c). An alternative is to correct 
all the pixels in the rat. The arrow indicates a location where intramuscular fat streaks appear but lack 
strong edges. 

Histograms of ratio values were analyzed to find an optimal threshold for 

separating adipose tissues from muscles and other organs. Peaks in the ratio histograms 

were found to be remarkably similar between animals. Gaussians fit to the water and fat 

peaks had means and standard deviations of 0.05±0.02 and 0.77±0.02, respectively. 

These distributions were comparable to those in an oil/water phantom (see Results, 

Figure 2-4). We used a fixed threshold halfway between the peaks at 0.61.  
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Figure 2-4. Water phantom calibration curve 

0 0 .2 0.4 0.6 0 .8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

a

a

IR

0 0 .2 0.4 0.6 0 .8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

a

a

IR

 
Calibration of ratio calculation on a vegetable oil and deionized water phantom.  A line profile (shown as a 
box in (a)) in a single sagittal slice of the phantom provides a calibration between all-oil and all-water 
voxels when plotted from top to bottom of the image (b). A linear fit of the data gave IR=0.75*α+0.05(1-α) 
with R2=0.96 (P<0.01). Oil and water and signal intensities in the ratio image were 0.75±0.03 and 
0.05±0.03, respectively. 

Partial Volume Correction. Partial volume errors were corrected two different 

ways. In the first method, we identified and corrected edge voxels. A border of edge 

voxels were found by computing the difference between dilation and erosion (3x3 

structuring element) of the visceral and subcutaneous adipose labels (Figure 2-3-c). The 

signal intensity of each voxel in the ratio image (IR) was modeled as a linear combination 

weighted by the fraction of adipose tissue in a given voxel (a). 

 (1 )R AT WI I Iα α= + −  (2.8) 

Where IW and IAT were signal intensities for pure voxels as obtained from the 

means of Gaussian fits to peaks in the ratio histogram. For the edge voxels, the fraction of 

adipose tissue (α) was estimated from Eq. 6 using measured IR values. Volume fractions 

α and (1 - α) in each edge voxel were added to the volume of adipose tissue and 

muscle/organs, respectively. The α fraction was added to the visceral or subcutaneous 

volume depending upon whether the edge voxel was originally inside or outside the 

abdominal cavity, respectively. The (1 - α) fraction was added to the muscle/organs 

independent of the abdominal cavity. In the second method, we corrected all voxels in the 
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animal using the same algorithm. This was advantageous for unmixing partial volumes 

due to thick slices.  

Signal Intensity Comparison. A single operator placed ROI’s of 5x5 pixels in 3 

consecutive slices of the right side of the liver in the ratio images. For comparison ROI’s 

were also placed in the most uniform regions of muscle in the lower right hindlimb, 

visceral adipose tissue, and the kidneys. The pixel values were tested for statistically 

significant differences between lean SHRs, dietary obese SHRs, and genetically obese 

SHROBs.  

Volume Rendering. Because the bias field was removed, ratio images were 

useful for volume rendering. Volume rendering revealed fat distribution within the 

animals and was especially useful for identifying fat streaks in the muscle. Ratio images 

were visualized using a special network script written for volume rendering in Amira 

(Mercury Computer Systems, Berlin, Germany). Each of the three classes in the label 

volume was exported separately from Matlab as a series of TIFF files containing the 

fraction of adipose tissue (α) of 0-1 linearly rescaled to the TIFF range of 1-216 before 

importing into Amira. Each series of TIFF’s corresponded to separate volumes for 

muscles/organs, visceral adipose tissue, and subcutaneous adipose tissue. We linked 

separate color maps and opacity modules to each image volume for rendering. Color 

maps were customized to provide contrast between tissues (e.g. different shades of pink 

for subcutaneous and visceral adipose tissue). Opacity was also adjusted to make muscle 

more opaque than adipose tissues. Rats were viewed from arbitrary angles using camera 

rotation and cropping. Adipose tissue distribution and partial volume effects were 

examined. Intramuscular fat streaks of the rats were compared visually. 
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2.3 Results 

Ratio Images and Bias Field Correction. Voxel composition, as determined by 

the ratio model (Eq. (2.6)), was found to be accurate and linear in a phantom of soybean 

oil and deionized water (Figure 2-4). Signal intensities in the ratio image of water and oil 

were measured by placing circular ROIs in the image far away from the meniscus. The 

line profile from pure water to pure oil showed a transition from water (0.05 ± 0.03) to oil 

(0.75 ± 0.03), which matched the values in the respective ROIs. Ringing artifacts 

occurred due to limited phase encoding, but a least squares linear regression of signal 

intensity vs. distance along the line profile was linear with an excellent fit (R2=0.96, 

Figure 2-4-b). This distance was directly proportional to the partial volume effect (α, Eq. 

(2.8)) because the line profile was positioned around the exact beginning and end of the 

intersection of the meniscus with the image grid. 
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Figure 2-5. SHROB/SHR rat ratio signal intensities in liver 
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Signal intensities in the liver were consistent with hepatic steatosis, a known disease of this rodent model. 
ROIs of 5x5 pixels were placed in 3 consecutive slices in each animal in the right side of the liver. Six of 
the twelve SHROBs (denoted SHROB*) were retrospectively identified as having unusually hyperintense 
livers. As compared to the other SHROBs, the six SHROB* were not statistically significantly heavier or 
younger, however they did have more visceral adipose tissue. Signal intensities in the ratio images were 
statistically significantly different between all groups except SHROB and SHR-DO (P<0.01). Signal 
intensities in muscle, kidney, and visceral adipose tissue were not different. 

Signal intensities in the liver varied greatly between cohorts, and some SHROBS 

exhibited elevated values consistent with hepatic steatosis, a known disease of this rodent 

model (62) (Figure 2-5). Lean SHRs had low values (0.01 - 0.04). SHR-DO had slightly 

higher values (0.03 - 0.08). SHROBs tended to cluster at high (0.12 - 0.24) or low (0.04 - 

0.07) liver values, suggesting two phenotypes (SHROB and SHROB*, respectively). As 

compared to SHROB, the six SHROB* animals had significantly different liver signal 

intensities (P<0.05). They were not significantly heavier (504.8±46.9 g vs. 438.9±47.3 g, 

P>0.20) or younger (172.3±28.7 days vs. 201.8±30.8 days, P>0.98). However, they did 

have more visceral adipose tissue (107.3±16.5 vs. 87.8±3.7 ml, P<0.02). Liver signal 

intensities in the ratio images were statistically significantly different between all groups 

(SHR-SHROB, SHR-SHR-DO, SHROB*-SHROB, etc.), except SHROB and SHR-DO 

(P<0.01). In other tissues, signal intensities in ratio images were very consistent between 
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all animal groups. Muscle, kidney, and visceral adipose tissue signal intensities were not 

different, and they generally were very flat across images. Intramuscular adipose tissue 

appeared in both SHROB and SHR-DO, but rarely in lean SHRs. 

Figure 2-6. Bias field cancelation in SHROB rat 

(a) (b) (c) (d)(a) (b) (c) (d)
 

Taking the ratio can also recover datasets which would be otherwise unusable due to coil sensitivity 
inhomogeneity (a, fat only image and b, fat+water image). Using our method, the 200% left-right bias field 
in both of the original images is canceled in the ratio image (c). Furthermore, the edges of the abdominal 
wall are retained. Volume rendering (d) aids in the interpretation of the different amounts of partial volume 
effects in each type of rat. This SHROB (d) is labeled with color maps for the liver, kidneys, adipose tissue, 
and other tissues. The ratio values were used for opacity. 

This methodology eliminated a large bias field created by a two-channel phased 

array coil with one array disabled. The left side of the image was over 200% higher than 

on the right side in both the fat only image (Figure 2-6-a) and fat+water image (Figure 

2-6-b) of a SHR-DO. This shared left-right bias field was cancelled in the ratio image 

(Figure 2-6-c). The edges of the image were preserved and even enhanced by the 

elimination of the chemical shift artifact. The contrast of the abdominal wall was 

improved with respect to adjacent adipose tissues especially on the left side of the image. 

Substantial signal was recovered in the other regions of the image despite severe coil 

sensitivity drop-off. Volume rendering in a SHROB was greatly aided by the ratio 

imaging, which eliminates this type of bias field (Figure 2-6-d). 
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Reproducibility of Measurements and Partial Volume Corrections. Image 

analysis variability was reduced by the semi-automatic ratio image analysis program 

(Figure 2-7). Tracings of the abdominal cavity were similar between operators with 

DSC’s of 0.89, 0.91, 0.93, 0.93, and 0.93. Moreover, the final effect of border delineation 

on adipose tissue volumes is even less because some regions far from adipose tissue 

borders will not contribute anyway (see below). The thresholds chosen by the operators 

in the T1W images caused a disagreement about the classification of adipose tissue 

voxels, as indicated by DSC’s after thresholding of 0.76, 0.79, 0.81, 0.86, and 0.91. The 

different thresholds also caused widely varying measurements of visceral and 

subcutaneous adipose tissue volume, 54.4±12.6 ml and 68.7±30.6 ml, respectively 

(Figure 2-7-a). 
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Figure 2-7. Intra-operator variability and PV correction 
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The semi-automatic segmentation was repeated by several human observers on the same data set of a 
dietary obese SHR (see Figure 2-7). Each observer segmented the abdominal cavity independently. When 
the volumes of the image were computed by thresholding the T1W image, significantly different volumes 
were measured by each operator (a). After ratio image calculation and partial volume correction of all 
pixels in the rat, the differences between observers were substantially reduced (b). 

When the semi-automatic ratio image analysis program was run using each of the 

operator’s tracings, the volume measurements became much more consistent (Figure 2-7-

b). DSC’s improved to 0.96, 0.96, 0.98, 0.98, and 0.99 before applying partial volume 

correction. Applying partial volume correction on edge voxels gave <1% volume change 

for each of the 6 analysis volumes. Visceral adipose tissue was 43.9±1.5 ml or 44.0±1.4 

ml if only edges were corrected. Subcutaneous adipose tissue was 60.1±1.5 ml before any 

corrections or 60.6±1.4 ml if only edges were corrected. When we applied partial volume 

correction to all voxels, the distribution of the 6 measured volumes narrowed and the 

mean of the 5 moved closer to the expert’s values. That is because measurements of 

visceral and subcutaneous adipose tissue volume became more narrowly distributed, 

50.1±1.9 ml and 75.2±1.9 ml, respectively after this correction was applied.  
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The scan-rescan experiment demonstrated excellent reproducibility and accuracy. 

When the semi-automated ratio image analysis was used with partial volume correction 

of all voxels in the rat, measurements of visceral and subcutaneous adipose tissue 

volumes were remarkably uniform. Visceral adipose tissue volume was 91.2, 87.8, and 

90.4 ml for the three measurements, and subcutaneous adipose tissue was 291.1, 288.8, 

290.6 ml. Volume measurements of both visceral and subcutaneous adipose tissue were 

not different, as indicated by the narrow coefficients of variation (i.e. standard deviation 

divided by mean) of visceral and subcutaneous adipose tissue (2% and 0.5%, 

respectively). The total volume of the rat was also very reproducible, 472.5, 472.7, and 

474.2 ml (Figure 2-8-a). The histograms of each of the positions were practically 

indistinguishable (Figure 2-8 b-d). We compared the MRI volumes to the weight of the 

animal on an electronic scale to determine accuracy. Using a standard density for adipose 

tissue (0.92 g/ml) and other tissues (1.04 g/ml) (25,71), we converted the MRI volumes to 

weights of 445.5, 446.4, and 447.4 g. These are close to the real body weight determined 

gravimetrically, 441.7 g. By contrast, a similar analysis prior to partial volume correction 

of all voxels in the rat produced animal weight estimates of 400.9, 400.5, and 400.5 g, 

respectively. However, it should be noted that this approximation overestimates total 

body weight because the volume of the lungs was not excluded. Also, the tail was outside 

the field of view, so its contribution is not included in the MRI estimates. 



 

Page 49 

Figure 2-8. Scan-rescan and repositioning reproducibility 
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Repositioning a SHROB thrice shows remarkably consistent measures of adipose tissue volumes with a 
standard error <1% of body volume. Despite physically repositioning the rat on the MRI bed and 
reshimming the scanner, the tissue volumes (a) and histograms (b-d) varied little. Partial volume correction 
was performed on all pixels in the rat. The total volume of the animal (the top of the subcutaneous adipose 
tissue bar) was practically invariant between the scans. Tissue volumes measured in the positions were not 
significantly different (P > 0.50). 

We next analyzed partial volume corrections for all rats using abdominal wall 

tracings from the single expert operator. Corrections were significant for all rats (Figure 

2-9). Partial volume corrections increased visceral adipose tissue volume by 23±2% 

(SHR), 15±2% (SHR-DO), 12±1% (SHROB) as a percentage of the total volume of 

visceral adipose tissue. Likewise, average partial volume correction of subcutaneous 

adipose tissue volumes increased by 26±1% (SHR), 22±2% (SHR-DO), and 13±1% 

(SHROB). Since the nominal fat volumes varied greatly between lean SHR and SHROB, 

these corrections varied from 2.3 to 40.7 ml. If we correct just the edge voxels, changes 

range from 0.2% to 1% of adipose depot volume for these same data sets. Figure 2-3-c 

shows the location of edge voxels in a SHROB. The biggest relative corrections were in 

the leaner animals, where muscle and other organs were overestimated in the initial 

binary segmentation. Generally, most corrections came from intramuscular adipose tissue 

and as a result of the relatively large slice thickness.  
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Figure 2-9. PV corrections in SHROB, SHR, and SHR-DO 
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Partial volume corrections differ between types of rats due to the differing adipose distribution. If only the 
edge pixels are corrected then the overall change in volumes is <1%. However, we found that correcting all 
the voxels in the rat was significant. The bar plots show each of the depots in ml vs. diet and genetics. The 
partial volume corrections are shown as gray bars in between the muscle/organ depot and the adipose tissue 
depots. Generally the amount of correction is proportional to the animal size. The muscle/subcutaneous 
partial volume effect is smaller in absolute volume, but it is quite large relative to the size of the 
subcutaneous depot. Partial volume correction enhances the statistical conclusions as described in the text. 
In every case it was found that the muscle and other organs were over-estimated before partial volume 
correction. 

Genetic/Dietary Obesity Phenotypes. Body composition was very different 

between lean SHR, and dietary and genetically obese animals (Figure 2-10).  

Subcutaneous adipose tissue volumes (Figure 2-10-a) were 278.2±42.4 ml (SHROB), 

77.3±13.0 ml (SHR-DO), and 33.0±12.6 ml (SHR). Visceral adipose tissue volumes 

(Figure 2-10-b) were 110.3±17.0 ml (SHROB), 55.9±10.7 ml (SHR-DO), 18.2±5.5 ml 

(SHR). Subcutaneous adipose tissue volumes were not significantly higher in dietary 

obesity (P<0.07 SHR-DO vs. SHR) but were highly significantly greater in genetic 

obesity (P<0.01 SHROB vs. SHR). Visceral adipose tissue volumes were significantly 

higher in both dietary and genetic obesity (P<0.01 SHR-DO vs. SHR, and P<0.01 

SHROB vs. SHR). All differences were several fold greater than the variations measured 

from the reproducibility measurements above.  
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Figure 2-10. Subcutaneous and visceral adipose tissue volumes 
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Adipose tissue volumes measured by MRI demonstrate differences in body composition with partial 
volume correction. The genetic obese SHROB rats (N=12) have significantly higher volumes of visceral (b) 
and subcutaneous adipose tissue (a) than the dietary obese SHR (N=6) and the lean control SHR rats (N=6).  
The dietary obese SHR have a significantly higher volume of visceral adipose tissue than the lean control.  
Subcutaneous adipose tissue was not higher in dietary obese SHR as compared to SHR with or without 
partial volume correction (P<0.10). Error bars indicate one standard deviation. In all cases the error in the 
measurement are less than the biological variation, which is much less than the underlying genetic and 
dietary differences. 

Biological and dietary variability was found to be much larger than the 

measurement errors. For example, the SHROB subcutaneous adipose tissue volume was 

on average 245.2 ml larger than SHR subcutaneous adipose tissue volume. In 

comparison, the effect of applying partial volume correction was much smaller (2.7-4.6 

ml in SHR, 22.0-40.7 ml in SHROB). Intra-operator variability and repositioning had 

much smaller effects, as measured by our other methods (1.9 ml and <1 ml, respectively). 

We concluded that the differences we observed reflect underlying biological differences. 

It would be interesting to investigate the effects of age and sex in a larger study.  

Intramuscular adipose tissue was clearly manifested in the ratio images, and 3D 

volume visualization aided in locating small “streaks.” Volume rendering was useful for 

visual inspection of fat distribution and the partial volume effect in the rats (Figure 2-6-
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d). By manipulating a cropping plane and rotating the view it was possible to appreciate 

the greater surface area of adipose tissue in lean rats.  

2.4 Discussion 

The ratio image methodology gives a robust, precise measurement of 

subcutaneous and visceral adipose tissue volumes. Effectively, it allowed us to remove 

the bias field due to coil sensitivity inhomogeneity and create a robust image analysis 

approach. In addition, the ratio technique eliminates additional artifacts such as chemical 

shift misalignment and partial volumes. Providing an estimate of lipid content is an 

additional bonus. The technique is sufficiently robust that we believe it could be applied 

robustly across different animals, scanners, coils, and other external factors.  

We simplified the ratio image model with assumptions which are valid under our 

imaging conditions. We assumed that B0 inhomogeneities were negligible over the rat. 

Chemical shift-selective excitation techniques are all vulnerable to variations of the main 

magnetic field, which results in locally inaccurate fat/water suppression. Accurate -

shimming reduces overall B0 variation mitigating the effects of B0 inhomogeneities. The 

rat and small phantoms we used are far smaller (<20 cm) than uniform portion of the 

main field in a clinical scanner (30-40cm), which justifies our assumption. We also 

neglected RF inhomogeneities (B1 variation). This is justified by the use of the human 

head coil for transmit in the animal studies, which is again larger than the rats. These are 

all reasonable assumptions under our imaging conditions on a clinical scanner. 

We tested the sensitivity of the model to small changes in the relaxivity 

parameters to ensure the results did not vary widely. We reprocessed one SHROB dataset 

with a variation of +10% to -10% in T1W, T2W, T1F, and T2F, and we recomputed 
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tissue volumes and ratio image signal intensities. Subcutaneous adipose tissue volume 

varied from 273.9 to 276.0 ml, less than a 1% change. Visceral adipose tissue volume 

varied from 93.9 to 96.6 ml, only a 3% change. Muscle/organ volume varied from 117.8 

to 122.7 ml, less than a 4% change. The mean signal intensity in the ratio images from 

0.78 to 0.81 in visceral adipose tissue, 0.06 to 0.07 in muscle, 0.04 to 0.05 in kidneys, and 

0.06 to 0.07 in liver. These signal intensity variations were as small as the variations in 

the ratio images using the initial relaxivities (e.g. 0.02 standard deviation in liver). We 

concluded that the model produced consistent results. We assumed that our choice of fat 

and water relaxivities was adequate for our imaging conditions. This is justified by the 

short TE, which made the sequence insensitive to T2. Our acquisitions were also 

somewhat desensitized to T1 by the long TR (i.e. 1200ms).  

An alternative to assuming constant relaxivities is to estimate them from MR 

measurements on a voxel or tissue basis. A relaxometry experiment could be designed to 

estimate T1 and T2 for each voxel by acquiring multiple echo times and multiple 

repetition times. Assuming that water and fat are the dominant proton species in each 

voxel, estimated values could be used in the calculation of the ratio image, Eq. (2.6). 

Related corrections have been implemented in Iterative Decomposition of water and fat 

with Echo Asymmetry and Least squares estimation (IDEAL). Liu et al. developed a per-

voxel T1 correction based a dual flip angles at the cost of doubling the number of scans 

required (49). Yu et al. presented a per-voxel T2* correction where the T2* of both fat 

and water were assumed to be equal due to an injection of Feridex (50). At least in human 

imaging, iron accumulation in the liver can be a confound for lipid measurements due to 

T2* effects (72), which suggests that estimation of relaxometry parameters is required for 



 

Page 54 

accurate quantitation. However, voxel estimation of T1 and T2 will necessarily be noisy 

and depend upon MR artifacts. Ideally, partial volume effects should be considered. Also, 

our method should be less sensitive to the effects of iron due to the dependence on T2, 

not T2*. Using average tissue values remains a viable alternative, especially when 

sensitivities to relaxometry parameters are minimal as argued above.  

Our method might not be applicable to high field scanners. At higher field 

strengths typical for small animal imaging research studies, several artifacts become 

worse such as B0 inhomogeneities and chemical shift artifacts. This model can still fix the 

chemical shift between fat and water, which increases in both Hz and pixels at high field 

strength. The maximum read-out bandwidth is constrained by gradient strength and the 

ADC sampling rate, which may be a limiting factor on some scanners (not on preclinical 

scanners). The tissue relaxitivites change, but T1 and T2 variations can be incorporated 

into this model with reasonable estimates. The model can also be adapted to a wide 

variety of pulse sequences / parameters (i.e., FLASH vs. Spin Echo, TR/TE, flip angle, 

etc.). As it is derived, the model cannot compensate B1 variation, B0 inhomogeneity, or 

eddy currents, which are problematic on higher field MRI systems. Fortunately, these 

types of errors could potentially be compensated for directly with MR acquisition 

techniques such as adiabatic RF excitation pulses to limit B1 heterogeneity or the use of 

the Multi-Point Dixon techniques to correct for Bo inhomogeneities. 

In its present implementation, a downside is the requirement for two image 

acquisitions which essentially doubles the overall acquisition time. However, multi-echo 

acquisitions (73) or alternative trajectories (53) approaches can be utilized to reduce the 

acquisition time closer to a single acquisition. Another approach is to obtain a single 
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water-suppressed image and correct any bias field inhomogeneity prior to quantifying fat 

volumes. One approach is to fit a low-order polynomial to the image and correct the bias 

field by minimizing image entropy (74,75). Some studies have not corrected the bias field 

at all (76-78). But, as we have shown here at 1.5T, these effects can be quite significant 

and can result in lipid quantitation errors as the thresholding/segmentation processes 

become inaccurate or unreliable.  

The three groups of rats provide an interesting contrast between genetic and 

dietary obesity. Genetically obese SHROBs have a number of metabolic diseases, 

including severe insulin resistance, glucose intolerance, and hyperlipidemia (29). We 

found that SHROBs have six times as much visceral adipose tissue and eight times as 

much subcutaneous adipose tissue as lean control SHRs. In contrast, dietary obese 

animals (SHR-DOs) have three times the visceral adipose tissue but only twice the 

subcutaneous adipose tissue of lean control SHRs, and the difference in subcutaneous 

adipose tissue is not statistically significant. Apparently both diet and genetics are 

correlated with visceral obesity, but massive expansion of the subcutaneous depot is 

unique to genetic obesity. Visceral adipose tissue is strongly correlated with metabolic 

diseases, especially insulin resistance (34). Insulin resistance is apparent in SHROBs with 

fasting insulin increased to at least 10 times that of SHR littermates while fasting glucose 

is unchanged (64). Glucose to insulin ratio, an index of insulin resistance, is 9-fold higher 

in SHROB than SHR. Dietary obese, SHR-DO, animals were comparably insulin 

resistant to the SHROB animals (9). The increased insulin resistance in the SHR-DO 

animals correlates well with the increases in visceral depots, which reinforces the link 

between visceral obesity and insulin resistance (79). It remains an open question whether 
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subcutaneous adipose tissue is an independent predictor of insulin resistance, but some 

preliminary studies in humans support this hypothesis (8,80). Bergman et al. observe that 

metabolic damage and insulin resistance are caused by the storage of lipids outside of 

visceral adipose tissue (81).  The phenotype of SHROBs with elevated visceral adipose 

tissue and liver fat content is consistent with this “lipid overflow hypothesis.” 

The results we have shown here demonstrate the importance of partial volume 

correction for measuring adipose tissue volumes. The primary motivation for partial 

volume correction in this study was to increase accuracy as well as precision. Voxel 

anisotropy caused partial volumes to occur because the slices were thicker than the in-

plane voxel size. This motivates a partial volume correction to make the data from 

different animals comparable. The images were acquired at different resolutions due to 

the different sizes of the animals and constraints of using a clinical scanner. Therefore we 

corrected partial volume effects in every pixel of the rat to remove this source of 

variability. It is not surprising that the volumes differ depending on whether all the voxels 

or just edge voxels were corrected because correcting only the edge voxels leaves a 

binary segmentation in all non-edge voxels. Alternatives include post-processing 

corrections, such as Gaussian mixture models and interpolation with reverse diffusion 

(82).  

We have also identified a robust method for calibrating lipid concentration. There 

are a variety of methods in the literature. Oil-water emulsions are commonly used to 

make a series of phantoms, but it is difficult to make a stable emulsion over a wide range 

of oil concentration with the same surfactant, owing to the challenge of stabilizing both 

oil-in-water and water-in-oil emulsions (42). Further, these emulsions may precipitate 
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(i.e. break down) over time, which would undermine the reproducibility of a longitudinal 

study. We chose an alternative approach based on manipulating the partial volume effect. 

The image acquisition of an unmixed oil-water phantom can be varied to create partial 

volumes, recreating the portioning of the biological specimen into fat and lean 

compartments. A thick slice can be shifted across the oil-water meniscus, but this 

requires many scans (83). Another alterative is to make non-selective projections of oil-

water ‘wedge’ phantoms on the frequency encoding axis, but this requires a custom 

image reconstruction (84). We modified the method of Hussain et al., who rotated the 

imaging matrix across the oil-water meniscus to create partial volumes (85). This has 

proven to be a robust technique which we believe is appropriate for studies where 

reproducibility is a concern.   

Scan-rescan variation gives a general indication of the magnitude of all 

instrument errors combined with the variability of physically placing the animal in the 

scanner over a short time. There may be additional instrument variability over a 

longitudinal experiment. An important aspect was that the animals were positioned 

casually, and not positioned according to landmarks or placed in a molded frame to lock 

position. Also, the obese animals were considerably more difficult to position. Our scan-

rescan-rescan repositioning experiment showed that the total volume of the rat varied 

<1.0 ml, which indicates the insensitivity of the analysis algorithm to positioning. This is 

an important feature for imaging of deformable rodent models. It should be noted that the 

same operator processed these datasets, which therefore do not include inter-operator 

variability. 
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For rapid comparison of animals, we find volume rendering useful. Volume 

rendering has previously been used to visualize adipose tissue distribution, which has 

aided studies of obese rodents. Calderan et al. performed a 3D reconstruction of T1-

weighted images, which assisted in interpreting anatomical relationships in obese mice 

(86). They noted the distribution of adipose tissue in an obese rat was predominantly 

subcutaneous along the caudal aspect of the animal, and the visceral adipose tissue had 

displaced one of the kidneys. We have also found volume rendering to be useful for 

examining intramuscular adipose tissue (i.e. “fat streaks”) as well as distention of the 

abdominal cavity. Our ratio imaging methodology works extremely well with volume 

rendering / classification techniques because of the correction of the bias fields. Large 

bias fields make volume rendering much harder to interpret because the non-uniform 

intensity causes confusing intensity variation in the volume renderings.  

In conclusion, we have developed a robust imaging and analysis paradigm 

centered on the generation of ratio images to enable effective phenotyping of rodent 

models of obesity. The remarkable homogeneity of ratio images is useful for both 

segmentation and 3D visualization, and reproducibility is also improved. The simplicity 

and reproducibility of this technique is promising for large scale studies of body 

composition in obese rodents influenced by diet, genetics, exercise, and drugs. These 

techniques are also generally applicable to clinical research studies of obesity where it is 

becoming important to quantify regional lipid distribution to track the effects of diet and 

exercise interventions (87). 
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Chapter 3 Robust Fat-Water Reconstruction on a 
Graphics Card 

3.1 Background 

Iterative Decomposition and Echo Asymmetry with Least squares estimation 

(IDEAL) (47) is a robust fat-water reconstruction technique, but it is computationally 

expensive because three or more TEs are acquired, tripling the data to be processed. 

Datasets can easily reach hundreds of megabytes, and the processing time can be lengthy. 

However, the reconstruction algorithm is fundamentally the same in each pixel, which 

implies that the operations can be carried out in parallel. This type of data-parallel 

reconstruction is appropriate for using the highly parallel graphics processor unit (GPU). 

The Nvidia CUDA architecture makes it possible to realize highly parallel algorithms on 

commodity graphics cards (Figure 3-1). Other MRI reconstruction algorithms, e.g. 

SENSE, have recently been shown to be much faster when implemented on graphics 

hardware (58). We investigated the potential speedups in the IDEAL reconstruction when 

using a GPU, and we made improvements to the reconstruction to make it more suitable 

for GPU implementation.  
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Figure 3-1. Nvidia CUDA Architecture 
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Nvidia CUDA architecture for massively parallel GPU computation. The Quadro FX5800 has 10 SIMT 
(Single Instruction, Multi-Threaded) multiprocessors, each of which has 24 scalar stream processors 
running at 400 MHz. Thousands of threads can be simultaneously executed on the multiprocessors, which 
have a 102 GB/s connection to shared memory. IDEAL is well-suited to SIMT computation because the 
mathematical operations for reconstruction are identical in each pixel, and the large IDEAL image sets can 
be stored in the shared memory. 

In the present work, we vectorized the IDEAL equations so that they are suitable 

for massively parallel computation on both GPUs and multicore multithreaded CPU 

systems. Vectorized equations are also used in a reformulation of Brent’s method (88), 

which provides convergence for the field inhomogeneity parameter (Ψ) with fewer 

iterations than the current standard of golden section search (51). We demonstrate that 

vectorized IDEAL scales well from small datasets to large ones when using GPUs and 

multithreaded CPUs. We also improve the robustness of the linear extrapolation model of 

Ψ to avoid propagated errors.  

3.1.1 Theory 

The IDEAL reconstruction has been published in detail elsewhere (47). Here we 

describe only the vectorization modifications needed to enable massively parallel 

computation and the histogram analysis of Ψ on a high field scanner. We also modify 

Brent’s Method (88) for parallel computation. The key observation is that the observation 
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matrix A is spatially independent, and the IDEAL calculations can be rewritten as simple, 

efficient matrix operations (i.e., vectorized).  

The original form of the IDEAL estimator is to solve Eq. (3.1) on a per-pixel 

basis. As described by Reeder et al. (46), the measured signals S(x,y,TE1) through 

S(x,y,TE3) are fit in a least squares sense to the observation matrix A to determine the fat 

and water components pW and pF. The field inhomogeneity parameter Ψ(x,y) is initialized 

to zero and then iteratively varied until the residuals of Eq. (3.1) are minimized. The 

pseudo-inverse of the observation matrix A is used to determine the fat and water 

components pW and pF. 
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 (3.1) 

3.1.2 Vectorized IDEAL  

We use a vectorized form of Eq. (3.1), which eliminates 'FOR' loops and enables 

GPU calculation. Although the equations below will show the case of three echo times 

(TEs) and two proton species, the result is quite general. Vectorized math will be even 

more important on higher resolution datasets with more TEs.  

In contrast to other implementations of IDEAL, the entire image is reconstructed 

simultaneously. The key observation is that the observation matrix A is spatially 

independent (i.e., the same calculations are performed in each pixel). Massive speedups 

are possible on the GPU for parallel tasks like this. The implementation is split into two 

steps described by Eq. (3.2) and (3.3). In Eq. (3.3), the current estimate of Ψ in every 

pixel is used to form a new matrix temporary matrix T which is free of phase due to Ψ. 
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Note that the '.*' operator has been introduced to indicate a per-element multiplication 

instead of a standard matrix inner product. 
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(3.2) 

The matrix T is used to find the fat and water components and the residuals. In 

Eq. (3.3), the pseudo inverse of the observation matrix (A†) is multiplied by the 

intermediate matrix T to give the fat and water least squares estimates. Our notation for 

the inverse operator should be understood in a least squares sense, i.e. ( ) 1† H HA A A A
−

=  

where H denotes the Hermetian transpose. 
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The residuals R(x,y,TE) are also formed from the intermediate matrix T. In Eq. 

(3.4) the product of the projection matrix (I-AA†) and the T matrix yields residuals for 

each echo time in each pixel. The residuals are squared for each echo time in the pixel 

and then squared. 
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 (3.4) 

Equations (3.2)-(3.4) are now vectorized and easily implemented on a GPU 

because they are simply matrix multiplications. The sum of squared residuals is 
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computed from Eq. (3.4) by summing the squares of the real and imaginary components 

of R(x,y,TE) over TE. The original dataset S, the observation matrix A and the projection 

matrix (I-AA†) are pre-computed and statically allocated on the GPU to minimize 

overhead.  

One additional speedup is possible because Eq. (3.2)-(3.4) are not square. our 

matrix multiplication library is faster for big columns than big rows. The number of 

pixels in the image will be much bigger than the number of TEs or proton species, so the 

implementation of Eq. (3.2)-(3.4) actually takes the transpose of all of the components 

before doing the multiplication by using an elementary property of matrix multiplication. 

In Eq. (3.5) and (3.6), we show two equivalent ways to multiply matrices (N, P) to get the 

resulting inner product (M). 

 M NP=  (3.5) 

Eq. (3.5) is equivalent to: 

 T T TM P N=  (3.6) 

In our specific matrix multiplication library, Eq. (3.5) is faster than Eq. (3.6), for 

large datasets. We speculate the speed difference is because Strassen's matrix 

multiplication algorithm was designed for square matrices, and non-square 

multiplications require zero padding. This zero padding may be more efficient in our 

library for the case of having bigger columns than rows. Regardless of the cause, we 

implemented (3.5) and (3.6) in the transposed form to gain additional speed. 

3.1.3 Comparison of Optimization Routines 

Brent's method and golden section search were each vectorized and implemented 

on the GPU. Golden section search has already been used to solve the IDEAL problem by 
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Lu and Hargreaves (51). Briefly, golden section search maintains four values of ψ: x0, 

x1, x2, and x3, as described by Press et al. (88). The endpoints x0 and x3 are an outer 

bracket on the minimum, and the two internal points x1 and x2 are used to maintain the 

golden ratio between the right and left segments. Given an initial bracket [AX,CX] and 

an initial guess BX, x0 and x3 are set to AX and CX, respectively, and x1 and x2 are set 

to BX and a bracket between BX and a golden section between the smaller of the two 

intervals. The golden section (G, i.e. the new point at which to evaluate ψ) of an interval 

(A,B) is given by Eq. (3.7). 

 3 5 ( )
2

G A A B−
= + −  (3.7) 

The objective function (F) is evaluated at both x1 and x2 before the main iteration 

begins. In every iteration, if F(x1) is less than F(x2) then the left interval will be 

subdivided by a golden section, the right endpoint will be moved to the left, and the 

objective function will be evaluated at the new point which is at the golden ratio of the 

new left bracket. If F(x1) is greater than F(x2) then the right interval is evaluated instead. 

The algorithm terminates when the width of the outer bracket is small enough (i.e. |x0-x3| 

is less than the maximum acceptable error tolerance, ε), and the solution for ψ is returned 

as the smaller of the function values most recently evaluated at x1 and x2. 

Vectorization of golden section search is straightforward because x0, x1, x2, and 

x3 can be turned into column vectors with one entry in the vector for each pixel being 

solved. Operations on x0, x1, x2, and x3 can be performed with vector math and logical 

indexing. For example, the termination criterion of |x0-x3|<ε can be accomplished as the 

vector subtraction of x0 and x3, followed by disregarding the sign of the outcome and 

comparing each value with the scalar ε. Let DONE be the list of pixels that pass the test, 
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and NOTDONE be the list of pixels which fail it. The vectorized golden section search 

algorithm needs to continue iterating upon the pixels in the NOTDONE list, whereas it 

can stop evaluations in the DONE list. The algorithm terminates when the NOTDONE 

list becomes empty (i.e. all pixels have achieved the minimum error tolerance). These list 

operations motivate the name logical indexing because these two lists replace one 

IF/ELSE statement. Entries in the list can only be either true or false, and there is exactly 

one entry in the list for each pixel being solved. All of the other IF statements and other 

conditions in the algorithm are replaced by similar sets of lists. For example, another set 

of lists is used to keep track of whether F(x1) or F(x2) was smaller in every pixel, and the 

algorithm explores the golden section in the appropriate interval as described above. The 

right hand side of Eq. (3.4) is formed from the pixels in the NOTDONE list, so no 

redundant function evaluations need to be performed in pixels which have already 

converged. The vectorized golden section search should be at least as fast or faster as a 

purely FOR-loop based implementation because the vector operations can take advantage 

of single instruction, multiple data (SIMD) instructions, which are integrated into to 

recent CPUs.  

Brent's method combines inverse quadratic interpolation with golden section 

search because the former has quadratic convergence, whereas the latter has only linear 

convergence (88). Brent's method is a completely different algorithm than golden section 

search for finding minima. For a well-behaved function, the fitted parabola can "jump" to 

the solution with fewer function evaluations than golden section search. The minimum x 

value (apex) of the parabola passing through the points (AX, F(AX)), (BX, F(BX)), and 

(CX,F(CX)) is given by: 
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2 2 2 2 2 21 ( ).*( ) ( ).*( ) ( ).*( )

2 ( ).*( ) ( ).*( ) ( ).*( )
F AX BX CX F BX CX AX F CX AX BXX

F AX BX CX F BX CX AX F CX AX BX
− + − + −

=
− + − + −

 (3.8) 

Brent's method can be summarized as follows. Like golden section search, an 

initial bracket [AX,CX] and an initial guess BX must be given. Brent's method maintains 

values of ψ used for fitting the parabola between the best three points most recently 

evaluated (x,v,w) as well as the value of the residuals at these points (fx,fv,fw). An outer 

bracket [AX,CX] is also maintained with two additional values of ψ (x1, x2) needed 

when golden sections are taken instead of parabolic steps. The parabolic interpolation is 

rejected if the apex lies outside the bracket [AX,CX], in which case the golden section 

step is taken instead. The outer bracket is reduced every time the objective function is 

successfully reduced by either the parabolic interpolation or the golden section step. 

Brent's method also keeps track of the last two steps which were actually taken (DX, 

EX), and a golden section step is forced whenever the second to last step (EX) would 

provide no new information about the function by being smaller than the maximum 

acceptable error tolerance, ε.  Golden section steps are also forced when the current step 

is within ε of the last point evaluated or outer brackets because this also does not provide 

new information. Convergence is guaranteed by the slow but reliable golden section 

steps, but the parabolic interpolation is used whenever allowed by the above criteria. 

Vectorization of Brent's method is more complicated to implement than golden 

section search, but the basic ideas remain the same. All of the internal variables of the 

algorithm are replaced by column vectors, and logical indexing is used in place of the 

various tests. There are many more logical indexing operations needed to replace all of 

the IF statements which enforce the criteria for deciding whether to take the parabolic or 

golden step. The arithmetic operations of Eq. (3.8) should be understood as a per-element 
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operations carried out in parallel on the GPU despite the fact that AX, BX, etc. are 

actually huge vectors. The .* operator has been added to emphasize this fact. The cost of 

evaluating both Eq. (3.7) and (3.8) in every unsolved pixel is much less than the other 

logical tests to needed by the algorithms to determine which value of ψ should actually be 

tested. Therefore, both Eq. (3.7) and (3.8) are always evaluated, and then the appropriate 

values of ψ are chosen per-pixel by the optimization routine based on the logical indexing 

inside the algorithm. 

3.1.4 Disambiguation of ψ by Planar Extrapolation 

After one solution for ψ is found in each pixel there remains the problem that 

there will always exist another value of ψ in the pixel which is also a minimum in the 

residuals curve but it approximately interchanges ("flips") the estimated fat and water 

components (48). This is the fundamental fat-water ambiguity in ψ, and the "flipped" 

value of ψ can be numerically predicted. Consider a pixel which only contains water 

which has a magnitude of 1 (W=1, F=0). The signal measured in the pixel S(TE) can be 

described by Eq. (3.9). 

 ( ) exp( 2 )S TE W j TEπψ=  (3.9) 

However, an equivalent signal can be measured if the pixel contains only fat 

(W=0, F=1) and a different value of ψ is used. Consider ψ1= ψ+Δf as substituted into Eq. 

(3.10). 

 
( ) ( exp( 2 )) exp( 2 1 )

( exp( 2 )) exp( 2 ( ) )
exp( 2 )

S TE F j fTE j TE
F j fTE j f TE
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π πψ
π π ψ
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= Δ
= Δ −Δ
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 (3.10) 
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The form of the final line of Eq. (3.10) is equivalent to (3.9) if fat and water are 

interchanged. Therefore in pixels containing only one proton species there is an intrinsic 

ambiguity between a solution of ψ where water is the dominant proton species and an 

equally valid solution where fat is the dominant proton species. Herein the solution of ψ 

which makes water the dominant species will be referred to as ψW, and the equivalent 

solution for inverting the fat and water estimates will be referred to as ψF. It can further 

be shown that there will always be two possible solutions (ψW, ψF) even if the voxel 

contains both proton species. The exact form of the two equivalent solutions is given by 

Yu et al. as follows (48). The value of ψ which inverts the two proton species (ψa) is 

given as a function of the current value of ψ (ψt), the current estimates of fat and water 

(F, W), and the echo shift chosen by the choice of TEs (ΔTE) in Eq (3.11). 

 1 exp( 2 )arg
2 exp( 2 )a t

W F j fTE
TE F W j fTE

πψ ψ
π π

⎛ ⎞+ Δ
= + ⎜ ⎟Δ + Δ⎝ ⎠

 (3.11) 

For a pixel which is dominated by one proton species, the difference between ψa 

and ψt is approximately equal to Δf. This ambiguity is fundamental to the formulation of 

the IDEAL method. An equivalent ambiguity can be shown in the 3-point Dixon method 

when the difference of two in-phase echoes at different TEs is used to estimate ΔB0. By 

definition, ψ=γΔB0, and a very similar argument can be constructed using Eq. (3.9)-

(3.11). It is impossible to know a priori which solution of (ψW, ψF) is the correct one in a 

single pixel (56). Instead, the correct solution must be derived using constraints of spatial 

smoothness between pixels. 

A further problem is that the residuals given from the least squares solution are 

also periodic as derived by Lu et al. (51). Consider the residuals J from a given value of ψ 
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applied to a set of three signals S(TE1), S(TE2), S(TE3) with a constant spacing of ΔTE 

used to create the observation matrix A and pseudoinverse A† in Eq (3.12).  

 

( )
exp( 2 1) 0 0 ( 1)

( ) † 0 exp( 2 2) 0 ( 2)
0 0 exp( 2 3) ( 3)

j TE S TE
J I AA j TE S TE

j TE S TE

πψ
ψ πψ

πψ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

  

(3.12) 

The choice of equally spaced echoes is beneficial to SNR of the estimated fat and 

water signals, but it has an unfortunate side-effect in making J periodic. Consider that Eq. 

(3.12) can be rewritten as follows in Eq without changing J. 
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 (3.13) 

 

This periodicity occurs at predict 1/ΔTE intervals, which means that the two 

possible solutions (ψW, ψF) discussed above are actually repeated at (ψW+N/ΔTE, 

ψF+N/ΔTE) and for any integer N. As previously stated, it is not possible to know a 

priori which of the aliased copies of (ψW, ψF) is the correct one in any given pixel, and 

therefore the enforcing spatial smoothness is the only practical solution to the problem. 
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One successful technique for finding the right value of ψ among the fat-water 

ambiguous values and their aliases is to use a region growing operation seeded either 

manually or automatically where the ground truth value of ψ is known or given by an 

operator (48). Adjacent pixels to the seed are linearly extrapolated from the known region 

using a square-spiral trajectory through the image. The linear extrapolation can be 

weighted by the intensities of the original input image data to reduce the effect that air 

voxels have on the extrapolation (48). Given a neighborhood of solved pixels at 

(x(1,1),y(1,1),…) with unambiguously solved fat-water solutions (ψ(1,1), ψ(2,1)…), the 

slope along both x and y (ψx, ψy) as well as an average value over the neighborhood ψ0 

are estimated in a least-squares sense: 
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where W is a weighting matrix formed from the intensities of the input images 

where w(i,j) equals the magnitude of the image measured at the first TE: 
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 (3.15) 

The slopes and offsets are estimated from the weighted least-squares solution to 

Eq. (3.14). Then the slopes and offsets are used to predict the correct value of ψ at the 

current X,Y pixel, and the minimum absolute difference between ψW, ψF and their aliases 

is chosen as the correct value for ψ(x,y). For example, consider the image shown in 

Figure 3-2. 
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Figure 3-2. Planar extrapolation of ψ 

(a) (b)(a) (b)
 

The planar extrapolation of ψ is shown for an intermediate step in the algorithm with an overlay on the 
magnitude image in (a). Given the neighborhood of solved ψ values in the lower half of the window, what 
is the correct choice for the current pixel in the red box (b)? The correct choice should make fat the 
dominant component because the window is currently centered over adipose tissue, but aliases of ψ still 
interfere with the choice. 

In this specific example, the pixel at the center of the window has ψW=147 Hz, 

ψF=-904 Hz, 1/ΔTE = 3153.6 Hz, and the aliased solutions include (-4058 Hz, -3006 Hz) 

and (2250 Hz, 3301 Hz). The neighborhood surrounding the pixel has ψ values with a 

median of -998 Hz, min of -1089 Hz, max -837 Hz, mean -995 Hz, and weighted planar 

extrapolation of -989 Hz (slope along X: ψx=2.7 Hz/pixel, slope along Y: ψy=1.0 

Hz/pixel, offset=-1010). The choice is easily and correctly picked as -904 Hz because it is 

the closest of the possible solutions (minimum absolute difference) to the planar 

extrapolation, but other regions are not as easy to solve. Instead of using planar 

extrapolation, other filters could be used. For example, the median of this neighborhood 

was fairly close to the correct solution, as was the mean. Computing the median of every 
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possible neighborhood during the extrapolation would be quite computationally 

expensive, but possibly very effective at rejecting outlier values. In contrast, computing 

the average of every neighborhood is relatively fast, but also very susceptible to outliers. 

A combination of planar extrapolation and averaging offers the best tradeoff between 

computational speed and being responsive to true changes in ψ. 

Planar extrapolation technique is prone to propagating errors throughout the 

image if any part of the region growing trajectory produces incorrect results because the 

incorrectly solved pixels will be used on a later iteration for extrapolation. Therefore 

errors must be carefully avoided in every pixel.  

We modify the planar extrapolation in several important ways. Firstly, the 

weighting is changed to be binary instead of using the original pixel intensities of the 

input images. This removes the effects of T1-weighting from the estimation, which is a 

problem in spin echo images with a short TR. Thus, fat pixels are given unusually high 

weight during the extrapolation, which can result in errors. All non-air pixels should be 

weighted equally. Secondly, the planar extrapolation should have maximum limits on the 

slopes of the x and y components. Error propagation frequently occurs when ψx or ψy is 

unrealistically large, which causes the wrong value of ψ to be chosen. This will cause 

later regions of the image to extrapolate to even larger values of ψ. Therefore, if ψx or ψy 

is above a set threshold then only the weighted average value of ψ0 is used to predict the 

correct solution. On a pixel-by-pixel basis this has the effect of switching from planar 

extrapolation filter to 2D averaging filter, which is more robust but less responsive to 

changes in ψ.  
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3.2 Methods and Materials 

High resolution shifted spin echo scans were acquired on a Bruker Biospec 

7T/30cm of two 26 week old C57BL/6J male mice, one each on a high fat diet mice and a 

low fat diet (Jackson Laboratory Diet-Induced Obesity Service, D12492i 60 kcal% fat 

chow vs. D12450Bi, 10 kcal% fat chow, Research Diets, Inc.). A T1-weighted Rapid 

Acquisition with Relaxation Enhancement (RARE) sequence with varying echo 

asymmetry delays was used to achieve π/6, 5π/6, and 3π/2 radian shifts between fat and 

water (TR=1087 ms/gated, TE=9.1 ms, 102 x 40 to 102 x 50 mm FOV, 512x256 matrix, 

4 averages, and echo asymmetry delays of 79, 396, and 714 us). Animal studies were 

conducted under a protocol approved by the Institutional Animal Care and Use 

Committee at Case Western Reserve University. 

The method was implemented on a desktop computer with 32GB RAM, dual Intel 

Xeon X5450 3.0 GHz processors, an Nvidia Quadro FX5800 (4GB RAM, 240 cores, 400 

MHz clock), and Matlab R2009a 64bit with Accelereyes Jacket v1.0.2. Jacket is a library 

that makes GPU computation easier to implement via calling Nvidia CUDA routines 

directly from Matlab.  

Brent's method was compared to golden section search using a mouse dataset. 

Signals of one pixel at 3 TEs were extracted from the mouse dataset in a pixel inside the 

spinal muscles (i.e. near the center of the FOV and known to be dominantly water). An 

initial bracket was constructed using downhill search starting at ψ=0 (88), and then each 

method was run from this initial condition. One function evaluation was allowed per 

iteration of the optimization routine. Iteration was stopped when the error in ψ was under 

0.1 Hz. 
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The speed of the GPU implementation was compared to an equivalent CPU 

implementation. A 512x256x3 mouse image was reconstructed using Eqs. (3.2) and (3.3) 

with 1000 fixed values of ψ in each pixel to test the running speed of the GPU and CPU 

implementations. The image was downsampled along the Y direction logarithmically 

from 512 pixels to down to 5 pixels to change the size of the dataset and determine the 

minimum image size where the computational speed of the GPU outweighs the cost of 

transferring the data across the bus to the GPU. Additionally, a CPU-only test was 

performed by changing the number of concurrent threads allowed in Matlab and 

repeating the reconstructions to determine how much benefit could be derived from using 

the multiple CPU cores (up to eight on this system).  

The robustness of the new planar extraction routine was compared with methods 

from the literature. The IDEAL reconstruction methods of Reeder et al. (46) and Yu et al. 

were implemented (48) in Matlab. Mouse images with difficult image features (i.e. 

quickly varying B0 inhomogeneity around the lungs and intestines, cardiac motion, and 

multiple ψ aliases across the full FOV) were chosen to test the different planar 

extrapolation routines. Each routine was initialized at the same point at the center of mass 

of the image. The unconstrained planar extrapolation routine by Yu et al. (48) was 

attempted with window sizes of 25x25, 30x30, and 20x20 pixels to test if empirically 

changing the window size would improve the planar extrapolation as suggested by the 

authors. The new method was tested with a 25x25 pixel window and limiting both slopes 

ψx and ψy to 15 Hz/pixel (i.e. 1.8 mT/m).  

The proposed limited slope method was compared to the unconstrained planar 

extrapolation routine by Yu et al. (48) given the same initial conditions in a large study of 
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mouse images. An image operator analyzed a total of 236 images in 12 mouse datasets 

using both algorithms. The operator determined the ground truth fat and water 

assignments using a manual correction algorithm, as follows. Initially, all pixels were 

assigned to the ψW solution (i.e. where water is assigned as the dominant species in each 

voxel). The operator repeatedly used a 20x20 median filter on the ψ map until the 

incorrectly assigned pixels in the adipose tissue were reassigned to the correct solution, as 

per the manual correction of Reeder et al. (46). The operator compared the ground truth 

fat and water estimates to those of starting each extrapolation method at the same pixel 

coordinates on the initial ψW solution. The number of incorrectly assigned pixels was 

found by thresholding a 75% change in signal intensity of the normalized absolute the 

water estimate as compared to the ground truth water estimate. Air pixels were excluded 

from this computation by applying a threshold to the original magnitude image of 

μair+3*σair, where the mean (μair) and standard deviation (σair) of air intensity was 

automatically determined from the 10x10 pixels in the upper right hand corner of the 

image. 

3.3 Results 

Golden section search required more function evaluation than Brent's method to 

achieve the same error tolerance in ψ (13 vs. 7 function evaluations in the example pixel, 

Figure 3-3). Over the non-air pixels in the mouse image shown in Figure 3-5, the median 

of the difference in the number of function evaluations of golden section search minus the 

number of function evaluations of Brent's method was three (min -4, max 8). The total 

number of iterations depended on the configuration of the brackets from the initial 

bracketing routine, but which was not counted against either optimization method. Brent's 
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method converged quickly when the parabolic fit to the initial bracket was good. In a 

very limited number of pixels (1.0% of all non-air pixels), Brent's method actually 

required more iterations due to inefficient switching between the parabolic and golden 

steps. The vast majority of pixels (93.9%) converged more quickly with Brent's method. 

Figure 3-3. Brent's Method Applied to IDEAL Estimation 
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Brent’s method uses inverse quadratic interpolation to quickly find minima in the residuals vs. Ψ curve. 
The initial brackets (crosses, +) are used to fit a parabola and “jump” to the apex, which is near the 
minimum (circle and x, small inset graph). For the same initial conditions in this example, Brent’s method 
isolates the minimum in 7 iterations as compared to 13 iterations for golden section search. 

Brent's method required fewer iterations to isolate minima in ψ than golden 

section search (7 vs. 13 iterations, respectively, for the example in Figure 3-3). Over the 

non-air pixels in a 512x256 test image (shown in Figure 3-7), Brent’s method required 

fewer iterations than golden section search in over 93% of non-air pixels (6.8±1.5 vs. 

9.6±1.6 iterations, P<0.01, Wilcoxon signed rank test, Figure 3-4). The center of the 

histograms of the number of iterations showed a reduction of 3 iterations for most pixels. 
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Figure 3-4. Histograms of Iterations. 
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Histograms of the number of iterations to solve the non-air pixels in a 512x256 test image (displayed in Fig 
2) demonstrate that Brent’s method typically requires fewer iterations. Starting from the same initial 
conditions, the iterations required for each method to isolate the minima were recorded. Brent’s method 
required fewer iterations than golden section search in over 93% of non-air pixels (6.8±1.5 vs. 9.6±1.6 
iterations, P<0.01 Wilcoxon signed rank test). 

The GPU implementation was ~50% faster than the CPU-only implementation in 

the full sized 512x256x3 image (23.5 s vs. 44.7 s, Figure 3-5-a). The CPU 

implementation became faster only for much smaller images, 24x256x3 or smaller (i.e. 

6000 or fewer pixels). The shapes of the curves suggest that the speed advantage of the 

GPU will continue to improve over the CPU for images larger than 512x256x3. The 

CPU-only test with multithreading showed that images all sizes were faster using more 

threads, but there were significant diminishing returns (Figure 3-5-b). Utilizing up to 4 

cores (i.e. 4 threads) improved reconstruction speed relative to not multithreading (70.0 s 

vs. 48.0 s for the 512x256x3 image), but using the maximum 8 threads provided <8% 

additional speedup relative to 4 threads (e.g. 44.6 s vs. 48.0 s). CPU mulithreading did 

not significantly affect reconstruction speed when the GPU was used (<5%, i.e. 0.9 s or 

less, data not shown). 



 

Page 78 

Figure 3-5. CPU vs. GPU Reconstruction Time 
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GPU versus CPU processing time for IDEAL reconstruction. (a) GPU and CPU execution times are plotted 
as a function of image size for a 3 TE reconstruction (N=11 repetitions of the reconstruction, dropping the 
first and averaging the others). For images of all sizes, the GPU was faster than the CPU (P<0.01), and for 
a 512x256 image, execution time was ~10X faster on the GPU as compared to the CPU with 8 threads 
(8.6±0.2 vs. 92.0±0.3 s, mean ± 1 s.d., P<0.01). (b) Execution time is plotted as a function of number of 
threads on an 8 core system. CPU-only performance improved from 1 to 4 threads, but improved relatively 
little with more threads. For the 512x256 image, 4 threads were 43% faster than 1 thread (98.7±0.3 vs. 
141.1±0.4 s, P<0.01) but 8 threads were only 7% faster than 4 threads (92.0±0.3 vs. 98.7±0.3 s, P<0.01). 

The GPU implementation was faster than the CPU for images of all sizes, and the 

advantage of the GPU improved with larger image sizes (Figure 3-6). Whereas the ratio 

of the CPU to GPU execution times was only 2.6 for the at the smallest image size tested 

(512 pixels), the ratio increased to 11.6 for the largest image size tested (261,888 pixels). 

The trajectory of the curves suggests that the speed advantage of the GPU will continue 

to improve over the CPU for larger images. 
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Figure 3-6. CPU/GPU Execution Time Ratio 
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The speedup provided by the GPU increases as a function of the image size. The ratio of the CPU to GPU 
execution times was only 2.6 at the smallest image size tested (512 pixels) but the ratio increased to 11.6 
for the largest image size tested (512x512 pixels). The ratio does not appear to increase further for larger 
images. Considering a very high resolution image of 2048x2048 (4.2 million pixels) with 3 TEs, the trend 
extrapolates to an execution time on 47.8 min on the CPU as compared to only 4.1 min on the GPU. 

Planar extrapolation was much more successful when the a priori limits were 

applied to the linear slopes (Figure 3-7). The unsolved ψ image (Figure 3-7-b) contained 

ψ aliases of +3150 Hz and -3150 Hz near the top and bottom of the image (head and tail, 

respectively). Planar extrapolation failed in these regions and caused errors of over 3150 

Hz to propagate past the lungs and intestines even when different window sizes were 

used (Figure 3-7-c, d, and e). The new algorithm was able to successfully solve this 

image (Figure 3-7-f), which was typical among other image slices in this algorithm. 

Multiple seed points were attempted to fix the method of Yu et al. (48), but all of them 

failed with similar propagated errors. In contrast, the limited slope algorithm was much 

less sensitive to the choice of the seed point. 
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Figure 3-7. Comparison of Planar Extrapolation Techniques 

(a) (b) (c) (d) (e) (f)(a) (b) (c) (d) (e) (f)
 

Comparison of the planar extrapolation (PE) and the modified planar extrapolation (MPE) algorithms. The 
reference magnitude image (a) and initial ψ map with many errors (b) are shown. When PE is performed 
with a variety of window sizes, 20x20, 25x25, and 30x30 (c-e, respectively), errors result when the window 
passes through the lungs and/or intestines. In comparison, MPE with a 25x25 window (f) does not suffer 
from these artifacts and finds a high quality ψ map. Those few remaining irregularities in ψ tend to occur in 
the lungs or the heart where fat-water calculations are corrupted by motion.   

The other IDEAL reconstruction algorithms tested failed on the example dataset 

(Figure 3-8). The IDEAL reconstruction method of Reeder et al. (46) failed in two parts 

of the images where initializing the reconstruction at ψ=0 did not converge to the correct 

solution for fat and water. The method of Yu et al. (48) assumes that the center of mass of 

the image converges to the correct solution when initialized to ψ=0, which is false in this 

dataset. In contrast, the proposed method was able to correctly separate fat and water 

throughout the image. 
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Figure 3-8. Comparison of IDEAL reconstructions 

(a) Water (b) Fat (c) ψ (d) (e) (f)
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Comparison of IDEAL algorithms shows the advantages of the new technique. The original IDEAL 
algorithm (a-c) incorrectly estimates fat as water and vice versa in the head, liver, and mid-spine. The 
region growing IDEAL algorithm (d-f) assumes the center of mass is a reliable starting point, which is false 
in this dataset, and therefore errors are propagated across the image. The proposed method (g-i) is able to 
correctly separate fat and water. 

The limited slope extrapolation performed significantly better (P<10-4) than the 

standard extrapolation routine of Yu et al., as determined a Wilcoxon-rank-sum test of 

the number of incorrectly assigned pixels in a study of 236 images in 12 mouse datasets 

(Figure 3-9). The error rate of the proposed method was six times lower than the standard 

extrapolation routine (0.7% vs. 4.5% of incorrectly assigned pixels normalized to the 

total number of non-air pixels). Most errors in the proposed method were due to either 

disconnected regions or respiratory artifacts. 
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Figure 3-9. Comparison of Errors 
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Comparison of number of pixels erroneously assigned (fat as water or vice versa) among a study of six low 
fat diet mice (mice 1-6) and high fat diet mice (7-12). A total of 236 images were processed by both 
algorithms and results were compared to the same images processed with careful manual editing. Air pixels 
were excluded by applying a threshold to the magnitude image. The number of pixels incorrectly assigned 
by MPE is significantly lower than PE (P < 10-4). 

3.4 Discussion 

A robust IDEAL reconstruction was developed for reconstructing mouse images 

on a high field scanner, and a commodity graphics card was used to speed up the 

computations. The vectorized mathematical equations were used to enable IDEAL to take 

advantage of the massively parallel graphics card and the multithreading of a multi-core 

CPU. Brent's method was used to quickly "jump" to the correct solution for ψ when 

minimizing the residuals, which reduced the number of iterations needed to solve the 

image. The planar extrapolation model was improved by limiting the fitted slopes of the 

extrapolation and switching to an averaging filter in the case of a bad fit, which 

eliminated the propagation of errors throughout the image.  

The speed advantages of using a GPU will become more important as the trend 

towards higher resolution images continues to produce larger MRI datasets. This work 
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demonstrates that 50% speedups are possible despite a significant disadvantage in clock 

speed (3.0 GHz CPU vs. 400 MHz GPU) and the need to transfer the entire image sets 

across the video bus. The implementation might be improved further by doing a pure 

GPU calculation, but our tests indicate that the CPU is actually faster for evaluating 

Brent's method due to the amount of branching logic.  

Brent's method is only one of a number of possible improvements to the 

optimization. Implementing a vectorized version of Newton's method appears promising 

because analytical first and second derivatives with respect to ψ are available for Eq. 

(3.4). Newton's method typically has the fastest possible convergence among line search 

algorithms if the starting condition is close enough to the minimum though caveats 

remain about maintaining brackets and minimum step sizes. It remains to be seen if 

algebraic decomposition and harmonic retrieval (89) are faster than the new method 

because they involve much more computationally expensive mathematical operations 

(i.e. per-pixel singular value decomposition). However, algebraic decomposition cannot 

account for T2* decay, whereas the vectorized forms of Eqs. (3.2)-(3.4) can model T2* 

decay without modification. Future work will include an optimization routine that 

estimates the imaginary component of ψ (i.e. T2* decay). 

In conclusion, a robust and efficient technique for reconstructing IDEAL fat and 

water images on a high field scanner was developed and implemented on a commodity 

graphics card, and a significant reduction in reconstruction time was achieved.  
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Chapter 4 IDEAL Mouse Imaging on a High Field 
Scanner 

4.1 Background 

The goal of this study was to develop a robust imaging technique for phenotyping 

the C57BL/6J mouse model of dietary obesity. On a high fat diet, the C57BL/6J mouse 

gains body weight and accumulates fat in adipose tissues and in the liver. We 

demonstrate the feasibility and effectiveness of applying IDEAL at 7T with relevant 

validation. Future work will allow for larger, longitudinal studies without the need for 

validating the phenotypes by euthanasia.  

CHESS imaging is the gold standard due to ease of implementation. We have 

shown that CHESS imaging can be used to phenotype rats on a 1.5T clinical scanner 

(90). There is an opportunity to get high resolution images with better SNR by using a 

high field scanner designed specifically for small animals. However, high field scanners 

have a non-uniform main magnetic field, which must be corrected to estimate fat and 

water signals. We chose the IDEAL framework for this study and compared it to CHESS 

imaging. One possible alternative to IDEAL is the 3-point Dixon method to compensate 

for field inhomogeneity, but the post processing phase unwrapping is unreliable. 

CHESS imaging fails or inadequately separates fat and water in the presence of 

large field inhomogeneity, which hinders quantification. CHESS imaging can fail on a 

single animal due to incorrectly setting the center frequency to fat, which can be a 

problem in obese rodents. It can also introduce inconsistencies in a study of many 
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animals where the product automated shimming does not work well every time. Our 

hypothesis is that IDEAL imaging is more robust than CHESS imaging at 7T. 

This work is the first to report an obese mouse imaging study using IDEAL at 7T. 

We also introduce a simple but effective T1 and T2 correction in post-processing instead 

of acquiring extra images.  

4.1.1 Theory 

IDEAL primarily uses phase information to separate fat and water. We assume 

that the effects of T2* decay can be ignored because the imaging acquisition uses 

extremely short echo shifts (e.g. 700 us or less). The IDEAL estimates will be biased by 

the T1 and T2 contrast inherent in the input images, which we model as follows.  

 ( ), ,/ 2 / 1
, , 1f w f wTE T TR T

f w f wM e eρ − −= −  (4.1) 

The IDEAL estimates (ρf and ρw) are biased by the T1 and T2 effects (T1f, T1w, 

T2f, and T2w). We want to measure the proton density (Mf and Mw). We assume that T1 

and T2 were measured or known a priori. The corrected fat and water estimates can be 

found by simple division.  

 ( ), ,/ 2 / 1
, , 1f w f wTE T TR T

f w f wM e eρ − −= −  (4.2) 

We correct all of these biases. The T1 of water will dominate the bias in Eq. (4.1) 

because gated, in vivo mouse imaging at 7T will require a TR on the order of 1 second, 

whereas T1w is much longer. We used the follow parameters for the phantom studies 

(T1W=2500 ms, T1F=850, T2W=25, T2F=70) and for mouse studies (T1W=2900 ms, 

T1F=500, T2W=360, T2F=32), based on measured T1 and T2 values (see Tables 1-3 and 

Methods).  
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CHESS imaging at 7T. As developed by Johnson et al. at 1.5T (90), CHESS 

imaging can be used to quantitatively estimate fat fractions. Different values must be 

substituted for the T1 and T2 corrections at 7T, but the ratio image still takes the 

following form. 
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 (4.3) 

Ir is the ratio image after T1 and T2 corrections for both fat and water, and the 

other symbols have the same meanings as in Eq (4.1).  

4.2 Methods and Materials 

Animal studies. High resolution shifted spin echo scans were acquired of six high 

fat diet mice and six low fat diet mice (26 week old C57BL/6J males, Jackson Laboratory 

Diet-Induced Obesity Service, D12492i 60 kcal% fat chow vs. D12450Bi, 10 kcal% fat 

chow, Research Diets, Inc.). A T1-weighted Rapid Acquisition with Relaxation 

Enhancement (RARE) sequence with varying echo asymmetry delays was used to 

achieve π/6, 5π/6, and 3π/2 radian shifts between fat and water (TR=1087 ms/gated, 

TE=9.1 ms, 102 x 40 to 102 x 50 mm FOV, 512x256 matrix, 4 averages, and echo 

asymmetry delays of 79, 396, and 714 us). For comparison to CHESS imaging, two 

additional in-phase scans were acquired with and without CHESS water saturation. T1 

was measured in one high fat diet animal and one low fat diet animal using a spin echo 

scan repeated with 8 different TRs (TE=12.6 ms, TR=690, 811, 955, 1128, 1351, 1661, 

2174, and 4000 ms, identical geometry to in vivo IDEAL scans). T2 was measured in the 
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same two mice using a multiecho spin echo scan (16 TE's equally spaced from 9.7 to 155 

ms, TR=4000 ms).  

Mice were weighed and euthanized immediately after imaging, and the right 

caudate lobe of the liver was dissected and snap-frozen in liquid nitrogen for triglyceride 

analysis via chemical lipid extraction. The concentration of triglycerides was measured 

by the optical density of glycerol backbones at 900 nm and converted into absolute 

concentration via a set of known concentration glycerol phantoms. The right median lobe 

was snap-frozen for histological analysis using Hematoxylin and Eosin (H&E) and Oil-

Red-O (ORO) stains.  

Phantom validation studies. Fat-water phantoms were imaged using the above 

protocol maintaining all parameters except acquiring only a single slice and disabling 

respiratory gating. Intralipid (20% soybean oil by weight, Sigma Aldrich) was diluted 

with deionized water (Millipore MilliQ deionizing water system) to create 50 ml conical 

tubes of 20%, 15%, 10%, and 5% soybean oil by weight. As a reference, two additional 

tubes of unmixed, pure soybean oil and deionized water were also imaged (herein 

referred to as 100% and 0% soybean oil by weight). Additional images were acquired 

with a very long TR (15 seconds) as a reference for comparison with the post-processing 

T1 correction. MR spectra were acquired in each tube individually using PRESS to model 

the in vivo imaging parameters (TR=1087 ms, TE=9.1 ms, 8 x 8 x 8 mm3 voxel, 30 

averages).  

Semi-automatic IDEAL Reconstruction. An interactive IDEAL reconstruction 

program was implemented in Matlab (The Mathworks Inc., Novi, MI). As described by 

Lu et al. (51), both minima in each pixel were found. The minimum corresponding to 
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having water as the dominant component was then assigned in each pixel. This will be 

the correct Ψ value for all water-dominated tissues, and it will be incorrect in all fat-

dominated tissues (e.g. adipose tissue). But the adipose tissues are irregular in shape, and 

they are often surrounded by water-dominated tissues. Using this observation, we use a 

2D median filter to fix the incorrectly labeled adipose tissue regions. The current Ψ value 

in every pixel in the image is compared to the median of a moving 2D median filter of 

15x15 pixels (size empirically chosen based on 200um x 200um in-plane resolution). If 

the difference between the Ψ value and the median of the neighborhood is over half of 

the fat-water frequency aliasing factor (525 Hz at 7T) then the pixel is "flipped" to the 

alternative solution (i.e. the water estimate is switched for the fat estimate, and vice versa, 

and the corresponding Ψ values are also flipped). This process is repeated by the operator 

until no further visual changes occur. We found this process to be adequate for the 

majority of images, which were typically corrected in about 10 sec.  

Semi-automatic Image Segmentation. We used the image analysis methods of 

Johnson et al. (90). Abdominal cavity volumes were manually traced in Amira (Mercury 

Computer Systems, Berlin, Germany) and imported into Matlab, along with the output of 

the interactive IDEAL reconstruction program. In brief, a lower bound threshold was 

automatically calculated and applied to the magnitude of the in-phase image to remove 

air by thresholding. The T1- and T2-corrected ratio of the two additional in-phase scans 

acquired with and without CHESS water saturation was used to segment adipose tissues 

from non-adipose tissues using a constant threshold of 0.50. Visceral and subcutaneous 

adipose tissue volumes were calculated as the size of one voxel times the number of 

segmented adipose tissue voxels inside and outside the abdominal cavity, respectively. 
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All other non-air voxels were measured as non-adipose tissue. IDEAL analysis was 

performed in exactly the same way, except that the air threshold was applied to the 

magnitude of the π/6 image, and the per-pixel fat ratio was calculated using the 

magnitudes of the final IDEAL fat and water estimates. Volumes of visceral and 

subcutaneous adipose tissue and non-adipose were calculated as described before for the 

CHESS analysis again using a constant threshold of 0.50. 

Signal Intensity Comparisons. An operator manually traced ROI’s of 30-50 

pixels in the ratio images generated by both CHESS imaging and IDEAL in Amira. 

ROI’s were placed in the right caudate lobe of the liver, the lower right hindlimb 

muscles, the visceral adipose tissue, and the kidneys. The pixel values were tested for 

statistically significant differences between the diets using an unpaired students t test. 

Fat-water contrast to noise ratio (CNR) was calculated by computing the mean and 

standard deviation of pixels in two 10x10 ROIs in kidneys (e.g. water, A) and adipose 

tissue (e.g. fat, B) as per Eq (4.4). 

 
2 2

|Mean( ) Mean( ) |CNR( , )
Standard Dev( ) / 2 Standard Dev( ) / 2

A BA B
A B

−
=

+
 (4.4) 

4.3 Results 

4.3.1 Phantom validation study 

IDEAL fat fraction estimates in the oil-water phantoms demonstrated the 

feasibility of measuring small changes in low fat fractions (<20% oil by weight). IDEAL 

fat fraction maps were found to be visually correlated with the known weight fraction of 

the emulsions (Figure 4-1-a). Nonlinearity and an unexpectedly high intercept (0.12) and 



 

Page 90 

slope (0.76) were observed in the linear fit of uncorrected ratio (R2=0.93, Figure 4-1-b). 

The T1 and T2 correction reduced the nonlinearity and intercept (0.04) and slope (0.70) 

and improved the linear fit (R2=0.99, Figure 4-1-b).  

Figure 4-1. Oil-Water Phantom at 7T 
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Oil-water phantom data demonstrate linearity of IDEAL fat fraction after T1 and T2 correction. a: 
Calculated fat fraction maps after T1 and T2 correction. b: Uncorrected IDEAL ratio vs. known oil 
concentration shows nonlinearity (R2=0.93). After correction, the IDEAL ratio is more linear (R2=0.99). 

Agreement of the IDEAL measurements with MR spectroscopy was tested using 

a Bland-Altman plot (Figure 4-2). The in vivo imaging limitation of a short TR (1087 ms) 

caused 5% to 15% disagreement between the uncorrected ratio (Figure 4-2, closed 

circles) and MRS. The T1 and T2 corrections (Figure 4-2, diagonal X's) reduced this 

disagreement to 2% or less for all low concentrations but increased the disagreement for 

the pure oil phantom. The effects of just the T2 correction were investigated by repeating 

the experiment with a very long TR (15000 ms). Disagreement between the long TR 

IDEAL fractions and MRS was reduced from ~5% to 2% or less for all low 

concentrations (Figure 4-2, horizontal crosses vs. open circles). 
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Figure 4-2. Bland-Altman Plot of Phantom Fat Fraction 

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Mean (MRS and MRI)

D
iff

er
en

ce
 (M

R
S 

- M
R

I)

 

 

TR=1087 ms
TR=1087, corrected
TR=15000
TR=15000, corrected

 
Bland-Altman plots of the oil-water phantom data demonstrate better agreement of IDEAL estimates with 
MRS after T1 and T2 corrections. Even at a very long TR, the correction improves the agreement of MRI 
and MRS. 

4.3.2 Animal studies  

The IDEAL ratio imaging technique produced robust tissue volume 

measurements in vivo despite receiver coil sensitivity inhomogeneity and field 

inhomogeneity (Figure 4-3). Signal intensity was not spatially uniform in the input T1-W 

images (e.g. compare top to bottom of Figure 4-3-a). Fat-water contrast was improved in 

the IDEAL water and fat estimates (CNR=19.5 in input images vs. 40.0 in IDEAL fat 

estimate images). The estimated field inhomogeneity map showed a wide range of offset 

from 300 Hz to 2000 Hz even in single slices (ψ map, Figure 4-3-d). The field 

inhomogeneity map also contained blurring and ringing artifacts, which were possibly a 

result of the RARE acquisition. The final T1 and T2 corrected ratio image was spatially 

uniform (Figure 4-3-e). Label images were created from the semi-automatic ratio image 
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analysis program to delineate the visceral adipose tissue (dark gray, Figure 4-3-f), non-

visceral adipose tissue (white), air (black), and other muscles and organs (light gray). 

Figure 4-3. IDEAL Mouse Images at 7T 

(c)

(e)(d)

(b)(a)

(f)

(c)

(e)(d)

(b)(a)

(f)
 

IDEAL image processing shows the challenges of 7T whole mouse imaging. T1-W input image (a) has 
significant receiver coil sensitivity inhomogeneity (e.g. top vs. bottom of image). The water (b) and fat (c) 
estimates retain this sensitivity inhomogeneity but provide improved fat-water contrast and tissue contrast 
(e.g. kidneys, liver, and muscles vs. adipose tissue depots). The corresponding ψ map (d) shows significant 
field inhomogeneity ranging from 300 Hz to 2000 Hz in this slice alone, sometimes over a small distance 
(arrows). The ratio image (e) removes the sensitivity inhomogeneity and enables semi-automatic 
quantification. The final label image (f) shows the segmentation of tissues tissues (non-visc. adipose tissue 
white, visc. dark gray, muscles and organs – gray, air – black). 

IDEAL ratio images had consistent signal intensities in all slices of every mouse 

(Figure 4-4). Adipose tissue was reliably 82%±3%, and muscles were 4%±3%. Small 
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amounts of blurring and ringing due to the RARE acquisition were observed in many 

slices (e.g. Figure 4-4-a, b, c). Respiratory artifacts caused additional blurring in a limited 

number of slices (e.g. Figure 4-4-d).  

Figure 4-4. Multiple Contiguous IDEAL Ratio Images 

(c) (d)(b)(a) (c) (d)(b)(a)
 

Multiple consecutive slices (a)-(d) are robustly estimated using the IDEAL ratio technique despite strong 
field inhomogeneity. 

Liver signal intensities in the corrected IDEAL ratio images were much higher in 

the high fat diet animals as compared to low fat diet animals (Figure 4-5-a and b, 

representative images). The intensities were uniformly low in the low fat diet animals 

(e.g. 3.1%±1.7%, Figure 4-5-a). A wider range of ratio intensities were observed among 

the high fat diet animals, corresponding to the degree of fat accumulation (e.g. 

27.2%±5.4%, Figure 4-5-b). These differences were validated ex vivo by chemical lipid 

extraction (220.6 vs. 13.4 mg triglyceride per g liver in these two mice).  
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Figure 4-5. Livers of High and Low Fat Diet Mice 

(a) (b)(a) (b)
 

IDEAL ratio images of a high fat diet mouse (a) and a low fat diet mouse (b) show a huge difference in 
liver fat content (27.2%±5.4% vs. 3.1%±1.7%). This difference was validated by chemical lipid extraction 
(220.6 vs. 13.4 mg triglyceride per g liver). 

IDEAL ratio signal intensities in the right caudate liver appeared to correlate 

linearly with the chemical lipid extraction assay (Figure 4-6). All of the low fat diet mice 

had very low intensities around 5% (corresponding to 20 mg/g TG/liver or less), whereas 

the high fat diet mice spanned a wide range from 12.5% to 31.0% (corresponding to 60 to 

250 mg/g TG/liver). A linear fit of the IDEAL vs. chemical lipid extraction yielded an 

intercept of 0.03 and a slope of 0.0013 with a strong R2 value of 0.90. High fat diet mice 

had significantly higher concentrations of liver lipids than the low fat diet mice whether 

measured by IDEAL (P=0.002) or by the chemical assay (P<0.001). 
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Figure 4-6. IDEAL Liver Fat Fraction vs. Chemical Lipid Extraction 
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Liver triglycerides, as measured by a chemical assay, vary linearly with IDEAL ratio (R2=0.90).  High fat 
diet mice had significantly higher concentrations of liver lipids, whether measured by IDEAL (P=0.002) or 
by the chemical assay (P<0.001). 

Histological assessment of the mouse livers indicated significant intracellular 

lipid accumulations in the high fat diet animal (Figure 4-7-a and c, representative images) 

as compared to the low fat diet animal (Figure 4-7-b and d, also representative). Both the 

H&E and ORO stains were informative. Marked micro and macrovacuolation in 

hepatocytes was observed extending from the central vein mid-way to the portal triads in 

the high fat diet mouse (Figure 4-7-a, H&E). The large vacuoles stained positively using 

ORO stain, indicating the presence of intracellular lipid (Figure 4-7-c). In contrast, the 

low fat diet mouse had no significant cytoplasmic vacuolation (i.e. lipid vacuoles) on 

H&E (Figure 4-7-b) and no positive staining for cytoplasmic lipid on ORO (Figure 4-7-

d). Histological assessments of the other mice were similar, though ORO staining 
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revealed a range of lipid staining among the high fat diet mice in agreement with the 

IDEAL ratio signal intensities and chemical lipid extraction assay. 

Figure 4-7. Mouse Liver Histology 

(a) (b)

(c) (d)

H&E H&E

ORO ORO

(a) (b)

(c) (d)

H&E H&E

ORO ORO
 

Histology of representative mouse livers shows significant intracellular lipid accumulations in the high fat 
diet animal (a and c) as compared to the low fat diet animal (b and d). Marked micro and macrovacuolation 
in hepatocytes extends from the central vein mid-way to the portal triads in the high fat diet mouse (a, H&E 
stain). In contrast, the low fat diet mouse had no significant cytoplasmic vacuolation (i.e. lipid vacuoles) on 
H&E (b) and no positive staining for cytoplasmic lipid on ORO (d). 

Adipose tissue depots were significantly enlarged in the high fat diet mice as 

compared to the low fat diet mice when measured using IDEAL imaging (Figure 4-8). 

Visceral adipose tissue volumes were increased 9 fold in high vs. low fat diet mice, 

6.4±0.4 cm3 vs. 0.7±0.2 cm3, respectively (P<0.001, Figure 4-8-a). Non-visceral adipose 

tissue volumes were increased 13 fold in high vs. low fat diet mice, 14.7±2.0 cm3 vs. 

1.2±0.3 cm3, respectively (P<0.001, Figure 4-8-a).  
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Figure 4-8. Adipose Tissue Volumes in High and Low Fat Diet Mice 
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As measured by IDEAL, high fat (HF) diet mice have significantly increased visceral (a) and non-visceral 
adipose tissue depots (b) as compared to low fat (LF) diet mice (P<0.001). Adipose tissue volume 
measurements are inflated from the CHESS imaging due to failure of water suppression (c), (d). CHESS 
measurements of visceral depots are increased (P=0.02) but non-visceral depots are not increased (P>0.10) 
in high fat diet mice vs. low fat diet mice. 

In contrast, CHESS imaging was far less reliable in measuring tissue volumes. As 

measured by CHESS imaging, visceral adipose tissue volumes were increased 3 fold in 

high vs. low fat diet mice, 7.4±4.2 cm3 vs. 2.5±1.5 cm3, respectively (P=0.02, Figure 4-8-

c). As measured by CHESS imaging, non-visceral adipose tissue volumes were not 

significantly increased in high vs. low fat diet mice, 19.1±11.3 cm3 vs. 10.0±5.7 cm3, 

respectively (P>0.10, Figure 4-8-d). 
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Liver fat concentration as measured by the chemical assay was compared with 

visceral adipose tissue volumes and concentration (Figure 4-9). Mice on the high fat diet 

had both significantly increased visceral adipose tissue volume and also liver fat 

concentration (P<0.05, Figure 4-9-a). However, fat concentration in visceral adipose 

tissue did not appear to correlate with liver fat concentration (ρ = -0.48, Figure 4-9-b). 

Figure 4-9. Liver Fat Concentration vs. Visceral Adipose Tissue 
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Visceral adipose tissue volume and liver fat triglyceride concentration are both significantly increased due 
to the high fat diet (P<0.05, a). The IDEAL fat concentration in visceral adipose tissue does not appear to 
be strongly correlated with liver fat triglyceride concentration (ρ = -0.48) (b). 

4.4 Discussion 

A robust IDEAL imaging technique for 7T mouse imaging was developed and 

validated using the IDEAL framework. Ratio image measurements were used to quantify 

adipose tissue volumes and liver fat fractions in the C57BL/6J mouse model of dietary 

obesity. Phantoms were used to validate the novel T1 and T2 corrections of the ratio 

image. IDEAL imaging was found to be more robust and superior to CHESS imaging. 

In comparison to the method applied at 1.5T and described in Chapter 2, B0 

corrections are required for phenotyping mice on a high field scanner. The shimming is 

not good enough at 7T to allow B0 variations to be neglected, even over a FOV as small 

as a mouse (<6 cm). CHESS imaging clearly shows multiple failures that cannot be 
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corrected in post-processing. However, the IDEAL was able to provide robust fat and 

water estimates even in the presence of large B0 variations, and the ratio images were 

very robust. In conclusion, this methodology can be used to routinely assess 

accumulation/depletion of lipid depots in animal models of obesity on a high field 

scanner. 
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Chapter 5 Conclusions and Future Work 
 

MRI was demonstrated to be robust and accurate for phenotyping obese rodents. 

Novel post-processing corrections were developed and on both low and high field 

scanners. Studies of obese rats and mice were conducted, and MRI phenotypes of lipid 

accumulation in visceral and subcutaneous adipose tissue and liver were validated with 

histology and body weight measurements. Yet, there are still opportunities for future 

work including acquiring faster images, correcting additional MRI artifacts, and 

conducting much larger studies of drugs, diet, and exercise, as will be argued in this 

concluding chapter. Concluding remarks and discussion are given after a discussion of 

potential future work. 

5.1 Future Work 

5.1.1 Faster Acquisitions with LEENA and IDEAL 

There are opportunities to reduce the MRI acquisition time when performing a 3-

point IDEAL method or similar experiment. Acquiring three full sets of images at 

different TEs is expensive in MRI, though this is much more of a burden to human 

clinical studies than to animal research. One promising technique is the keyhole Dixon, 

where the first TE image is fully acquired and the second TE image is only partially 

acquired (54). Perceptually equivalent reconstructed fat and water images were obtained 

despite a 25%-38% reduction in acquisition time, depending on the ROI chosen inside the 

body. SNR was decreased corresponding to the theoretical limitations from total 
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acquisition time, and some ringing artifacts were observed. Developing this technique for 

rodent studies on a high field scanner will depend on whether SNR can afford to be 

reduced beyond current levels.  

Another promising technique is a 1-point Dixon acquisition with alternating phase 

encoding lines taken at different TEs, called Lipid Elimination with an Echo-shifting 

N/2-Ghost Acquisition (LEENA) (91). Parallel imaging reconstruction techniques are 

used to remove the ghosting artifacts, and a 50% reduction in acquisition time is possible. 

Developing this method will require using multiple receiver coils, which were not 

available for the experiments performed in this work.  

5.1.2 Faster IDEAL Reconstruction and Per-pixel T2* Correction 

Brent's method is only one of a number of possible improvements to the 

optimization. Implementing a vectorized version of Newton's method appears promising 

because analytical first and second derivatives with respect to ψ are available for the 

IDEAL equations. Newton's method typically has the fastest possible convergence among 

line search algorithms if the starting condition is close enough to the minimum though 

caveats remain about maintaining brackets and minimum step sizes (88). The challenge 

will be initializing the minimization routine such that convergence occurs to a minimum 

and not one of the many maxima in the residuals curve. 

T2* decay was not observed using the shifted spin echo scans at 7T because the 

effective echo times were on the order of 700 μs or less, whereas T2* is at least 5 ms in 

most pixels. Correcting T2* decay is still possible in principle because IDEAL can 

estimate an imaginary component to the B0 inhomogeneity if T2* is equal for fat and 

water are assumed to be equal (50). The imaginary component of ψ is modeled as per Eq. 
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(5.1), where the real component remains the same as in typical IDEAL reconstruction and 

the imaginary component reflects an approximated T2* decay. 

 0 *

1
2 T2
iBψ γ
π

= Δ +  (5.1) 

An interesting observation can be made and incorporated into the IDEAL 

reconstruction when the relationship between T2 and T2* is modeled according to Eq. 

(5.2). Often it is assumed that k=1 so that the decay due to B0 inhomogeneity is modeled 

as a simple exponential decay. 

 0*

1 1
T2 T2

k Bγ= + Δ  (5.2) 

T2 is on the order of 50-60 ms in many tissues, and therefore the first term of Eq. 

(5.2) is negligible relative to the second term on a high field scanner because 0BγΔ  is on 

the order of 100s of Hz. The IDEAL reconstruction can be modified to reflect this fact 

that under these conditions the real and imaginary components of ψ are no longer 

independent. On a low field system where the first term of Eq. (5.2) is not negligible it 

might be possible to extract T2 from the difference of the real and imaginary components 

of ψ.  

5.1.3 Large Scale Mouse Study of Obesity Genes 

Given that the IDEAL method has been validated in obese mice at 7T, the next 

logical step is to perform a much larger study. The results presented in Chapter 4 are 

critical for planning the correct number of mice from a 'bootstrapping' statistical 

perspective. The method can be used to study lipid accumulation/depletion in adipose 

tissue and ectopic depots (muscle, liver) as a function of high fat, low sucrose (HFLS) 
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and low fat, low sucrose (LFLS) diets as well as switching from HFLS to LFLS at 26 

weeks. Mice will be BL6 and A/J, a mouse model previously shown to resist obesity. 

Animals will be scanned six times during their respective diet regimen to determine 

group differences including the dynamics of accumulation/depletion of lipid depots. Data 

will be compared to anticipated changes in fasting glucose levels. In an additional, longer 

term study, we can characterize the development of NAFLD and its progression to NASH 

in mice on a HFLS diet and mice on HFLS supplemented with either cholesterol or trans 

fats, both of which have both been demonstrated to lead to NASH in mice. All imaging 

results will be correlated to histological assessments.  

Successful completion of this study will produce a robust and comprehensive 

suite of MRI assessments of lipid levels in animal models. This will enable many future 

studies of the role of genes, diet, and drugs on lipid stores, metabolism, and 

complications such as fatty liver disease.  

5.2 Conclusion 

Obesity is a very prevalent disease and co-morbidity of other diseases in many 

Western societies. While the causes appear to be obviously linked to excessive intake of 

calories in the typical Western diet, there are numerous underlying genetic and societal 

factors. As described above and in previous chapters, there is a need to accurately 

identify genes and novel treatments, and rodent models of obesity will be needed to test 

the effects of diet, drugs, and lifestyle changes. MRI is undoubtedly the best modality 

available for studying obese rodents, and many important post-processing methods have 

been developed in this work to enable such studies. 
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A robust imaging and analysis paradigm was developed using ratio images to 

enable effective phenotyping of rodent models of obesity. The remarkable homogeneity 

of ratio images is useful for both segmentation and 3D visualization, and reproducibility 

is also improved. The simplicity and reproducibility of this technique is promising for 

large scale studies of body composition in obese rodents influenced by diet, genetics, 

exercise, and drugs. These techniques are also generally applicable to clinical research 

studies of obesity where it is becoming important to quantify regional lipid distribution to 

track the effects of diet and exercise interventions. 

A novel technique for reconstructing mouse images on a high field scanner was 

developed and shown to be robust even in the presence of severe field inhomogeneity. 

Reconstruction time and incorrect results have hindered the use of Dixon methods in the 

past, but the new method is fast and robust. Based on IDEAL, vectorized mathematical 

equations were derived and a commodity graphics card was used to speed up the 

computations to only half of the running time on a CPU. The speed advantages of using a 

GPU will become more important as the trend towards higher resolution images 

continues to produce larger MRI datasets. The number of function evaluations was 

reduced using Brent's method to correctly solve the IDEAL reconstruction problem, and 

the propagation of errors throughout the image was eliminated by the new method.  

The new method for high field imaging was validated using a mouse model of 

dietary obesity. Ratio image measurements were used to quantify adipose tissue volumes 

and liver fat fractions. IDEAL ratio imaging was found to be more robust and superior to 

CHESS imaging. IDEAL was able to provide robust fat and water estimates even in the 

presence of large field inhomogeneity. In conclusion, this methodology can be used to 
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routinely assess accumulation of lipid depots in animal models of obesity on a high field 

scanner. 
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