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Introduction to Query Notifications

• Query Notifications are intended to alleviate 
repetitious queries of data that do not change 
frequently

• Rather than polling a table and looking for 
changes:
– Register a SQL query indicating what you want to 

know
– Wait for SQL Server to send you a message 

indicating that the table has changed
– Perform your query or action



Example: software bug tracking
• Suppose that you use a bug tracking 

program which has a table like this:

• Your manager, Greg, says that everyone should 
receive an email within 1 minute whenever 
there are at least 3 bugs, unclosed (Status=4) 
with a Severity of 3. 

• How do you fulfill Greg’s request?



SQL Query for severe, unclosed bugs

• At the moment, there are 4 bugs in the 
Defect table matching these criteria.

• Greg tells you to mark DefectIDs 7 and 11 
as invalid (Status=2). 

• But how will you know when another 
severe bug gets entered into this table?

• Possible solutions: polling, triggers, and 
notifications

SELECT * FROM [dbo].[Defect]
where [Severity] = 3 and [Status] = 4 



Solution 1: Polling

• You edit one of your in house applications to 
repeat that SQL query every minute and send 
an email whenever the criteria are met

• Good: simple, deterministic, and fast (on your 
development system). Works with any db.

• Bad: Polling from multiple computers increases 
the database load, which slows down all SQL 
queries.

• Ugly: What if an update statement changes two 
rows at the same time?



Polling Code Example

• Timer1 is a Windows Forms Timer
• Still has problems: how frequently to poll? How 

reliable is it?

private int lastCount = 0;
private void timer1_Tick(object sender, EventArgs e)
{

using (SqlConnection connection = new SqlConnection())
{

using (SqlCommand command = 
new SqlCommand("SELECT count([DefectID]) C FROM [dbo].[Defect] 

where [Severity] = 3 and [Status] = 4;", connection))
{

connection.Open();
using (SqlDataReader reader = command.ExecuteReader())
{

if (reader.Read())
{

int newCount = reader.GetInt32(0);
if (newCount != lastCount && newCount >= 3)
{

lastCount = newCount;
SendEmail();

} } } } } }



Multiple simultaneous updates

• If these two updates happen between polls (or inside a 
transaction), no email is sent

• Otherwise, an email will be sent. Possibly unreliable.

Before updates:

UPDATE [dbo].[Defect]
SET [Severity] = 3, [Status] = 4
WHERE [DefectID] = 1

UPDATE [dbo].[Defect]
SET [Severity] = 1, [Status] = 1
WHERE [DefectID] = 26

After updates:



Polling - Summary

• Simple but inefficient, polling is the 
traditional model for getting updates

• The polling interval is always a problem
• Timers can be unreliable in Windows



Solution 2: Triggers

• You write a database triggers for AFTER INSERT and 
AFTER UPDATE. The triggers redo the SQL query 
and send emails using dbmail.

• Good: The trigger only runs once, and it runs only on 
the database server, so only 1 email gets sent.

• Bad: The trigger always runs, even when unrelated 
rows are changed. The database is slower than it 
should be.

• Ugly: You accidentally introduce a bug in the trigger 
and it silently corrupts your data for two days before 
anyone notices!



Insert Trigger TSQL Code

• Also need to write similar triggers for updates 
and deletes

• Be very careful about error handling!

CREATE TRIGGER dbo.tri_i_Defect ON dbo.Defect
AFTER INSERT AS BEGIN
SET NOCOUNT ON;

declare @newCount int, @addedCount int;

SELECT @newCount = count([DefectID])
FROM [dbo].[Defect]
where [Severity] = 3 and [Status] = 4;

SELECT @addedCount = count([DefectID])
from inserted
where [Severity] = 3 and [Status] = 4;

if(@addedCount > 0 and @newCount >= 3)
exec msdb.dbo.sp_send_dbmail;

END



Originating Statement

• The triggers run in the context of the originating 
statement (i.e., the transaction)

• If trigger fails, then the originating statement fails! 
(Transaction aborts.)

• The trigger always runs, even when it’s irrelevant to 
the business goals.

INSERT INTO [dbo].[Defect]
([Created],[LastModified],[Summary],[Severity],[Status]
,[AssignedToUserID],[CreatedByUserID],[ProjectID])

VALUES (getdate(),null,'Changing fonts causes all text to reverse (right to left)',4,1
,null,2,1)

TRIGGER dbo.tri_i_Defect runs

Email might be sent
Transaction commits



Triggers - Summary

• Use with caution. Debugging is not easy.
• Triggers are powerful and reliable because they 

always run! They must be fast because they are 
integral to the server.

• Triggers run in the context of the originating 
statement, which can cause seemingly 
unrelated applications to unexpectedly fail 
(table locks, cascading triggers).



Solution 3: Query Notifications

• You decide to try Query Notifications with C# or 
VB SqlDependency to receive a callback when 
the criteria are satisfied.

• Good: reliable, fast, and no redundant queries 
occur. Data can’t be corrupted or lost.

• Bad: You have to learn a new way of doing 
database queries.

• Ugly: It’s Microsoft specific (2005+), but Oracle 
has a similar mechanism



Query Notification Example

• Part 1: Initialize the .NET runtime’s background 
thread that manages all QNs in the application

private string DbConnectionString = "Server=some-server.mycompany.com;
Initial Catalog=defects; Integrated Security=True";

private SqlConnection BrokerConnection = null;
private SqlCommand BrokerCommand = null;
private DataSet BrokerDataSet = null;

public void CreateDep()
{

SqlDependency.Start(DbConnectionString);

BrokerConnection = new SqlConnection(DbConnectionString);
BrokerCommand = new SqlCommand("SELECT [DefectID] FROM [dbo].[Defect]

where [Severity] = 3 and [Status] = 4;", BrokerConnection);
BrokerDataSet = new DataSet();

StartListening();
}



QN Example – Part 2

• Part 2: Create the SqlDependency and tell 
SQL server to start listening for changes

private void StartListening()
{
// Make sure the command object does not already have
// a notification object associated with it, and there aren't any old results
BrokerDataSet.Clear();
BrokerCommand.Notification = null;

// Create and bind the SqlDependency object to the command object.
SqlDependency dependency = new SqlDependency(BrokerCommand);
dependency.OnChange += new OnChangeEventHandler(OnDataChanged);

// we don't have to care about these results, 
// but we must run the query at least once to receive notifications
using (SqlDataAdapter adapter = new SqlDataAdapter(BrokerCommand))
adapter.Fill(BrokerDataSet, “Defect");

}



QN Example – Part 3

• Part 3: Receive a callback from the worker 
thread.

• Optional: subscribe again

void OnDataChanged(object sender, 
SqlNotificationEventArgs e)

{
// Check COUNT(*) from table, then possibly send email
// This event will occur on the worker thread pool.
SendEmail();

// must redo the query to resubscribe
StartListening();

}



QN Example – Part 4

• Part 4: Clean up. Stop background thread, 
free server resources.

private void Form1_FormClosed(object sender, 
FormClosedEventArgs e)
{
RemoveDep();

}

public void RemoveDep()
{
// Release the dependency.
SqlDependency.Stop(DbConnectionString);

if (BrokerConnection != null)
BrokerConnection.Close();

}



QN Benefits

• The same notification works for Insert, 
Update, and Delete statements

• The notification is guaranteed to be 
delivered by the SQL Broker 

• SQL Server won’t fire the notification 
unless the WHERE clause is satisfied

• Still need to check COUNT(*) when 
notification occurs

private SqlCommand BrokerCommand = new SqlCommand(
"SELECT [DefectID] FROM [dbo].[Defect] where  [Severity] = 3 and 

[Status] = 4;", BrokerConnection);



Consequences for other SQL

• There is a slight cost to other SQL statements 
(ins/upd/del, not select)

• The cost is similar to updating a non-clustered index

UPDATE [dbo].[Defect]
SET [Severity] = 3, [Status] = 4
WHERE [DefectID] = 1

SQL Broker added overhead



Query Notifications - Summary

• Estimated benefits of QN as compared to 
polling with 10 db updates per day: 
– Polling: 1 query/second * 86,400 sec/day * 100 

clients = 8.6 M select queries. 
– QN: 100 clients * 3 queries = 300 select queries 

• (1: setup, 2: callback, 3: resubscribe)

• Query Notifications are easiest in C# or 
VB.NET with SqlDependency, but they are 
possible in any ODBC client

• Very reliable, but slightly slower than triggers



Message Queues

• SQL Server 2005+ has a message 
queuing service (Broker)
– Used by Query Notifications, Database email, 

external clients
• Scales up to millions of messages per 

minute
• Message management is transactional, 

not protocol oriented



Transactional message mgmt.

• SQL Server makes message management 
easy because it uses transactions
– If the client fails, the transaction aborts using 

the standard database mechanisms
• Unlike IBM Websphere MQ, the receiving 

client can be remote
• Unlike Apache ActiveMQ, queues can be 

bidirectional
• (Not sure how it compares to Amazon 

SQS)



Uses of a Message Queue

• Each stage has at least one message queue
• Queue allows either sending or receiving computers to 

crash without loss of information
• Much like email, but for programs not people

HeadquartersCustomers

order
cars

Parts suppliers

orders
parts

orders
assembly

Assembly plant

sends
parts



Questions?

• Next: Case Study in an automotive 
assembly plant







Assembly Plant Computer Systems

Enterprise Resource 
Planning

• Incoming orders

• Inventory management

• Billing

• Reports & Auditing

ERP MES PLC

• Production database

• Individual computers 
(workstations, testing 
systems, inspections)

• Barcode scanners

• Torque guns

Manufacturing 
Execution System

Programmable Logic 
Controllers

• Motors

• Sensors

• Robots

• Lights 

• Buttons

Each of these types of computer systems performs a different role in 
automotive assembly.



MES Intro – Fictional Assembly Line

• Operators at each station perform assembly tasks
– E.g., Operator 1A attaches a fuel tank with two bolts. Op 1B 

scans a barcode on the fuel tank
– Op 2A and 2B attach fuel line hoses and scan barcodes
– Op 3A uses a leak testing system to verify that the fuel system is 

correctly installed

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

Op 1A Op 1B Op 2A Op 2B Op 3A



Intro – Assembly Line Computers

• RFID readers determine which vehicle is in which 
station 

• Industrial PCs display instructions to the operators and 
control the other devices based on the current vehicle

• Torque wrenches are used to attach parts
• Barcode scanners are used to verify part numbers

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

RFID 1 RFID 2 RFID 3

PC 1 PC 2 PC 3

TQ 1A

SCAN 1B

SCAN 2A, 2B
TEST 3A



Intro – Torque Guns

• Manual torque wrenches (“clickers”) are too slow and 
inaccurate

• Electronic torque guns are fast and precise. Operator 
fatigue and injury are also reduced.
– Industrial PC tells the torque guns: how many torques on 

each part (e.g., 4 bolts), how much torque to apply (50 Nm), 
how many times to rotate (350°-450°)

– Torque gun responds with data about what the operators 
actually did

Manual torque 
wrench (“clicker”) Electric nutrunner (“torque gun”)



Intro – Barcode Scanners

• The industrial PC enforces the following rules: 
• After attaching a part, the part number must be scanned to 

make sure the right part was used
• The serial number must be scanned for billing
• Part numbers are often 8 digits followed by a 2 letter revision 

level (e.g., 12345678AB)
• Prefixes or checksums can be used to validate these inputs

Rear axle barcodes

Part No

Serial



Intro – RFID Tags and Readers

• The integrity of the RFID reader system is critical 
because the vehicles move through many different 
stations

• The Industrial PC reads database records to 
determine which vehicle is in which station

• Other database queries determine the operations and 
parts needed at the station for the current vehicle

Passive RFID tag
RFID Reader



Review of MES

• Industrial PCs display instructions to the operators and 
control the torque guns, barcode scanners, and other 
devices based on the current vehicle

• The operators rely on the Industrial PCs 
– To tell them which operations to perform
– To enforce quality rules
– To update the MES database server

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

RFID 1 RFID 2 RFID 3

PC 1 PC 2 PC 3

TQ 1A

SCAN 1B

SCAN 2A, 2B
TEST 3A



Problem 1: Polling for vehicles

• How does each Industrial PC know that a 
new vehicle has arrived in station?
– The RFID reader program updates a 

database table when it reads new tags
– Traditional approach: poll the RFID table
– Alternative approach: use query notifications

• Polling is the normal computer architecture 
for industrial line operations



PLCs are always in charge

• Programmable 
Logic Controllers 
(PLCs) often use 
polling in normal 
operations:

• (ladder logic)

while(true)

if(limit switch 1 is true and torque gun 5 
has been used more than 4 times)

turn on alarm 32;

sleep(100);

• Polling is OK for PLCs because they use 
dedicated hardware on realtime systems

• But polling is a terrible idea MES computers

Siemens Simatic PLC: a real time industrial 
control system for hundreds of devices, 
tolerant of extreme variations in power, 
temperature, vibration, electronic noise, and 
physical impact.



Polling for vehicles – RFIDTable

Tag VIN Station Timestamp
50034 1C4 1 08:30:27
50057 1C5 2 08:31:53
30029 1C6 3 08:29:38

Suppose PC 2 wants to know when a new vehicle is in station 2:
OldVIN = ‘’
NewVIN = ‘’
While true:

SELECT @NewVIN=VIN from RFIDTable where Station=2
If NewVIN != OldVIN

OldVIN = NewVIN
Do stuff

Sleep(1000)



Alternative: Query Notifications

• Each Industrial PC registers a QN for one 
row in the database table (by Station)

• When the RF-ID reader writes a new tag, 
the Industrial PC receives the notification 
and provides new instructions to the 
operators (part numbers, quality checks, 
etc.)

• The Industrial PC then resubscribes and 
waits for another notification



Problem 2: Polling for test results

• How do the operators know when the fuel 
leak test has failed?
– Traditional approach: UHF radio calls (aka, 

walkie-talkie) are used to verbally call out 
problems

– Alternative approach: Computer generated 
internal emails

• Radio calls are fast but unaccountable, 
unreliable, and unrecorded.



Alternative: Triggers

• There is no PC for the test results, so the 
database needs a different mechanism for 
notifying people

• Whenever a failure occurs, the database 
trigger sends an internal email

• iPods or other mobile devices are used to 
tell the plant supervisors to deal with the 
failures



Problem 3: Polling for problematic incoming orders

• How do the operators know when there is 
a problem with an order that has just 
arrived?
– Traditional approach: Manual inspection (or 

just wait until it causes a problem!)
– Alternative approach: Use emails and 

message queuing to SAP/ERP system
• Message queue is already part of billing 

system



More Examples of Notifications

ERP MES PLC

Enterprise Resource 
Planning

• New parts have arrived

• A part is changing 
revision levels (AB -> AC)

• A problem has occurred 
with supplier deliveries

• A new build has an 
impossible combination of 
parts

• A repair was performed 
but not double-checked

• Computer hardware has 
failed (deadman switch)

• A vehicle failed a critical 
quality test

Manufacturing 
Execution System

Programmable Logic 
Controllers

• A robot has failed to perform 
an operation (e.g. assembling 
tires or stamping a VIN on a 
vehicle)

• An operator has entered a 
forbidden area of the plant 
during production

• Motors are failing to run

• Sensors are reading 
impossible values



Conclusions

• Query notifications are better than polling and 
readily available in SQL Server (or Oracle) 
databases
– think differently about client design
– use triggers with caution

• Manufacturing Execution Systems are large 
and complex 
– many points of failure
– lots of legacy hardware and software
– great opportunities for query notifications



Questions?


