
SQL Server Notifications in a
manufacturing environment

David Johnson
www.djohn89.com

The views expressed in this presentation are my own opinions and do not
necessarily correspond to endorsements or opinions of Fiat Chrysler
Automobiles (FCA) or Mobis North America (MNA).

Outline

• Introduction to Query Notifications
– Example: software bug tracking
– Polling, Triggers, and Notifications
– Message Queues

• Case Study: Manufacturing Execution System
(MES)
– Assembly line stations, torque guns, barcode

scanners, RFID readers, and testing equipment
– Industrial PCs assist operators and enforce rules
– Examples: Polling for vehicles, test results, and

problematic incoming orders
• Conclusions

Introduction to Query Notifications

• Query Notifications are intended to alleviate
repetitious queries of data that do not change
frequently

• Rather than polling a table and looking for
changes:
– Register a SQL query indicating what you want to

know
– Wait for SQL Server to send you a message

indicating that the table has changed
– Perform your query or action

Example: software bug tracking
• Suppose that you use a bug tracking

program which has a table like this:

• Your manager, Greg, says that everyone should
receive an email within 1 minute whenever
there are at least 3 bugs, unclosed (Status=4)
with a Severity of 3.

• How do you fulfill Greg’s request?

SQL Query for severe, unclosed bugs

• At the moment, there are 4 bugs in the
Defect table matching these criteria.

• Greg tells you to mark DefectIDs 7 and 11
as invalid (Status=2).

• But how will you know when another
severe bug gets entered into this table?

• Possible solutions: polling, triggers, and
notifications

SELECT * FROM [dbo].[Defect]
where [Severity] = 3 and [Status] = 4

Solution 1: Polling

• You edit one of your in house applications to
repeat that SQL query every minute and send
an email whenever the criteria are met

• Good: simple, deterministic, and fast (on your
development system). Works with any db.

• Bad: Polling from multiple computers increases
the database load, which slows down all SQL
queries.

• Ugly: What if an update statement changes two
rows at the same time?

Polling Code Example

• Timer1 is a Windows Forms Timer
• Still has problems: how frequently to poll? How

reliable is it?

private int lastCount = 0;
private void timer1_Tick(object sender, EventArgs e)
{

using (SqlConnection connection = new SqlConnection())
{

using (SqlCommand command =
new SqlCommand("SELECT count([DefectID]) C FROM [dbo].[Defect]

where [Severity] = 3 and [Status] = 4;", connection))
{

connection.Open();
using (SqlDataReader reader = command.ExecuteReader())
{

if (reader.Read())
{

int newCount = reader.GetInt32(0);
if (newCount != lastCount && newCount >= 3)
{

lastCount = newCount;
SendEmail();

} } } } } }

Multiple simultaneous updates

• If these two updates happen between polls (or inside a
transaction), no email is sent

• Otherwise, an email will be sent. Possibly unreliable.

Before updates:

UPDATE [dbo].[Defect]
SET [Severity] = 3, [Status] = 4
WHERE [DefectID] = 1

UPDATE [dbo].[Defect]
SET [Severity] = 1, [Status] = 1
WHERE [DefectID] = 26

After updates:

Polling - Summary

• Simple but inefficient, polling is the
traditional model for getting updates

• The polling interval is always a problem
• Timers can be unreliable in Windows

Solution 2: Triggers

• You write a database triggers for AFTER INSERT and
AFTER UPDATE. The triggers redo the SQL query
and send emails using dbmail.

• Good: The trigger only runs once, and it runs only on
the database server, so only 1 email gets sent.

• Bad: The trigger always runs, even when unrelated
rows are changed. The database is slower than it
should be.

• Ugly: You accidentally introduce a bug in the trigger
and it silently corrupts your data for two days before
anyone notices!

Insert Trigger TSQL Code

• Also need to write similar triggers for updates
and deletes

• Be very careful about error handling!

CREATE TRIGGER dbo.tri_i_Defect ON dbo.Defect
AFTER INSERT AS BEGIN
SET NOCOUNT ON;

declare @newCount int, @addedCount int;

SELECT @newCount = count([DefectID])
FROM [dbo].[Defect]
where [Severity] = 3 and [Status] = 4;

SELECT @addedCount = count([DefectID])
from inserted
where [Severity] = 3 and [Status] = 4;

if(@addedCount > 0 and @newCount >= 3)
exec msdb.dbo.sp_send_dbmail;

END

Originating Statement

• The triggers run in the context of the originating
statement (i.e., the transaction)

• If trigger fails, then the originating statement fails!
(Transaction aborts.)

• The trigger always runs, even when it’s irrelevant to
the business goals.

INSERT INTO [dbo].[Defect]
([Created],[LastModified],[Summary],[Severity],[Status]
,[AssignedToUserID],[CreatedByUserID],[ProjectID])

VALUES (getdate(),null,'Changing fonts causes all text to reverse (right to left)',4,1
,null,2,1)

TRIGGER dbo.tri_i_Defect runs

Email might be sent
Transaction commits

Triggers - Summary

• Use with caution. Debugging is not easy.
• Triggers are powerful and reliable because they

always run! They must be fast because they are
integral to the server.

• Triggers run in the context of the originating
statement, which can cause seemingly
unrelated applications to unexpectedly fail
(table locks, cascading triggers).

Solution 3: Query Notifications

• You decide to try Query Notifications with C# or
VB SqlDependency to receive a callback when
the criteria are satisfied.

• Good: reliable, fast, and no redundant queries
occur. Data can’t be corrupted or lost.

• Bad: You have to learn a new way of doing
database queries.

• Ugly: It’s Microsoft specific (2005+), but Oracle
has a similar mechanism

Query Notification Example

• Part 1: Initialize the .NET runtime’s background
thread that manages all QNs in the application

private string DbConnectionString = "Server=some-server.mycompany.com;
Initial Catalog=defects; Integrated Security=True";

private SqlConnection BrokerConnection = null;
private SqlCommand BrokerCommand = null;
private DataSet BrokerDataSet = null;

public void CreateDep()
{

SqlDependency.Start(DbConnectionString);

BrokerConnection = new SqlConnection(DbConnectionString);
BrokerCommand = new SqlCommand("SELECT [DefectID] FROM [dbo].[Defect]

where [Severity] = 3 and [Status] = 4;", BrokerConnection);
BrokerDataSet = new DataSet();

StartListening();
}

QN Example – Part 2

• Part 2: Create the SqlDependency and tell
SQL server to start listening for changes

private void StartListening()
{
// Make sure the command object does not already have
// a notification object associated with it, and there aren't any old results
BrokerDataSet.Clear();
BrokerCommand.Notification = null;

// Create and bind the SqlDependency object to the command object.
SqlDependency dependency = new SqlDependency(BrokerCommand);
dependency.OnChange += new OnChangeEventHandler(OnDataChanged);

// we don't have to care about these results,
// but we must run the query at least once to receive notifications
using (SqlDataAdapter adapter = new SqlDataAdapter(BrokerCommand))
adapter.Fill(BrokerDataSet, “Defect");

}

QN Example – Part 3

• Part 3: Receive a callback from the worker
thread.

• Optional: subscribe again

void OnDataChanged(object sender,
SqlNotificationEventArgs e)

{
// Check COUNT(*) from table, then possibly send email
// This event will occur on the worker thread pool.
SendEmail();

// must redo the query to resubscribe
StartListening();

}

QN Example – Part 4

• Part 4: Clean up. Stop background thread,
free server resources.

private void Form1_FormClosed(object sender,
FormClosedEventArgs e)
{
RemoveDep();

}

public void RemoveDep()
{
// Release the dependency.
SqlDependency.Stop(DbConnectionString);

if (BrokerConnection != null)
BrokerConnection.Close();

}

QN Benefits

• The same notification works for Insert,
Update, and Delete statements

• The notification is guaranteed to be
delivered by the SQL Broker

• SQL Server won’t fire the notification
unless the WHERE clause is satisfied

• Still need to check COUNT(*) when
notification occurs

private SqlCommand BrokerCommand = new SqlCommand(
"SELECT [DefectID] FROM [dbo].[Defect] where [Severity] = 3 and

[Status] = 4;", BrokerConnection);

Consequences for other SQL

• There is a slight cost to other SQL statements
(ins/upd/del, not select)

• The cost is similar to updating a non-clustered index

UPDATE [dbo].[Defect]
SET [Severity] = 3, [Status] = 4
WHERE [DefectID] = 1

SQL Broker added overhead

Query Notifications - Summary

• Estimated benefits of QN as compared to
polling with 10 db updates per day:
– Polling: 1 query/second * 86,400 sec/day * 100

clients = 8.6 M select queries.
– QN: 100 clients * 3 queries = 300 select queries

• (1: setup, 2: callback, 3: resubscribe)

• Query Notifications are easiest in C# or
VB.NET with SqlDependency, but they are
possible in any ODBC client

• Very reliable, but slightly slower than triggers

Message Queues

• SQL Server 2005+ has a message
queuing service (Broker)
– Used by Query Notifications, Database email,

external clients
• Scales up to millions of messages per

minute
• Message management is transactional,

not protocol oriented

Transactional message mgmt.

• SQL Server makes message management
easy because it uses transactions
– If the client fails, the transaction aborts using

the standard database mechanisms
• Unlike IBM Websphere MQ, the receiving

client can be remote
• Unlike Apache ActiveMQ, queues can be

bidirectional
• (Not sure how it compares to Amazon

SQS)

Uses of a Message Queue

• Each stage has at least one message queue
• Queue allows either sending or receiving computers to

crash without loss of information
• Much like email, but for programs not people

HeadquartersCustomers

order
cars

Parts suppliers

orders
parts

orders
assembly

Assembly plant

sends
parts

Questions?

• Next: Case Study in an automotive
assembly plant

Assembly Plant Computer Systems

Enterprise Resource
Planning

• Incoming orders

• Inventory management

• Billing

• Reports & Auditing

ERP MES PLC

• Production database

• Individual computers
(workstations, testing
systems, inspections)

• Barcode scanners

• Torque guns

Manufacturing
Execution System

Programmable Logic
Controllers

• Motors

• Sensors

• Robots

• Lights

• Buttons

Each of these types of computer systems performs a different role in
automotive assembly.

MES Intro – Fictional Assembly Line

• Operators at each station perform assembly tasks
– E.g., Operator 1A attaches a fuel tank with two bolts. Op 1B

scans a barcode on the fuel tank
– Op 2A and 2B attach fuel line hoses and scan barcodes
– Op 3A uses a leak testing system to verify that the fuel system is

correctly installed

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

Op 1A Op 1B Op 2A Op 2B Op 3A

Intro – Assembly Line Computers

• RFID readers determine which vehicle is in which
station

• Industrial PCs display instructions to the operators and
control the other devices based on the current vehicle

• Torque wrenches are used to attach parts
• Barcode scanners are used to verify part numbers

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

RFID 1 RFID 2 RFID 3

PC 1 PC 2 PC 3

TQ 1A

SCAN 1B

SCAN 2A, 2B
TEST 3A

Intro – Torque Guns

• Manual torque wrenches (“clickers”) are too slow and
inaccurate

• Electronic torque guns are fast and precise. Operator
fatigue and injury are also reduced.
– Industrial PC tells the torque guns: how many torques on

each part (e.g., 4 bolts), how much torque to apply (50 Nm),
how many times to rotate (350°-450°)

– Torque gun responds with data about what the operators
actually did

Manual torque
wrench (“clicker”) Electric nutrunner (“torque gun”)

Intro – Barcode Scanners

• The industrial PC enforces the following rules:
• After attaching a part, the part number must be scanned to

make sure the right part was used
• The serial number must be scanned for billing
• Part numbers are often 8 digits followed by a 2 letter revision

level (e.g., 12345678AB)
• Prefixes or checksums can be used to validate these inputs

Rear axle barcodes

Part No

Serial

Intro – RFID Tags and Readers

• The integrity of the RFID reader system is critical
because the vehicles move through many different
stations

• The Industrial PC reads database records to
determine which vehicle is in which station

• Other database queries determine the operations and
parts needed at the station for the current vehicle

Passive RFID tag
RFID Reader

Review of MES

• Industrial PCs display instructions to the operators and
control the torque guns, barcode scanners, and other
devices based on the current vehicle

• The operators rely on the Industrial PCs
– To tell them which operations to perform
– To enforce quality rules
– To update the MES database server

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

RFID 1 RFID 2 RFID 3

PC 1 PC 2 PC 3

TQ 1A

SCAN 1B

SCAN 2A, 2B
TEST 3A

Problem 1: Polling for vehicles

• How does each Industrial PC know that a
new vehicle has arrived in station?
– The RFID reader program updates a

database table when it reads new tags
– Traditional approach: poll the RFID table
– Alternative approach: use query notifications

• Polling is the normal computer architecture
for industrial line operations

PLCs are always in charge

• Programmable
Logic Controllers
(PLCs) often use
polling in normal
operations:

• (ladder logic)

while(true)

if(limit switch 1 is true and torque gun 5
has been used more than 4 times)

turn on alarm 32;

sleep(100);

• Polling is OK for PLCs because they use
dedicated hardware on realtime systems

• But polling is a terrible idea MES computers

Siemens Simatic PLC: a real time industrial
control system for hundreds of devices,
tolerant of extreme variations in power,
temperature, vibration, electronic noise, and
physical impact.

Polling for vehicles – RFIDTable

Tag VIN Station Timestamp
50034 1C4 1 08:30:27
50057 1C5 2 08:31:53
30029 1C6 3 08:29:38

Suppose PC 2 wants to know when a new vehicle is in station 2:
OldVIN = ‘’
NewVIN = ‘’
While true:

SELECT @NewVIN=VIN from RFIDTable where Station=2
If NewVIN != OldVIN

OldVIN = NewVIN
Do stuff

Sleep(1000)

Alternative: Query Notifications

• Each Industrial PC registers a QN for one
row in the database table (by Station)

• When the RF-ID reader writes a new tag,
the Industrial PC receives the notification
and provides new instructions to the
operators (part numbers, quality checks,
etc.)

• The Industrial PC then resubscribes and
waits for another notification

Problem 2: Polling for test results

• How do the operators know when the fuel
leak test has failed?
– Traditional approach: UHF radio calls (aka,

walkie-talkie) are used to verbally call out
problems

– Alternative approach: Computer generated
internal emails

• Radio calls are fast but unaccountable,
unreliable, and unrecorded.

Alternative: Triggers

• There is no PC for the test results, so the
database needs a different mechanism for
notifying people

• Whenever a failure occurs, the database
trigger sends an internal email

• iPods or other mobile devices are used to
tell the plant supervisors to deal with the
failures

Problem 3: Polling for problematic incoming orders

• How do the operators know when there is
a problem with an order that has just
arrived?
– Traditional approach: Manual inspection (or

just wait until it causes a problem!)
– Alternative approach: Use emails and

message queuing to SAP/ERP system
• Message queue is already part of billing

system

More Examples of Notifications

ERP MES PLC

Enterprise Resource
Planning

• New parts have arrived

• A part is changing
revision levels (AB -> AC)

• A problem has occurred
with supplier deliveries

• A new build has an
impossible combination of
parts

• A repair was performed
but not double-checked

• Computer hardware has
failed (deadman switch)

• A vehicle failed a critical
quality test

Manufacturing
Execution System

Programmable Logic
Controllers

• A robot has failed to perform
an operation (e.g. assembling
tires or stamping a VIN on a
vehicle)

• An operator has entered a
forbidden area of the plant
during production

• Motors are failing to run

• Sensors are reading
impossible values

Conclusions

• Query notifications are better than polling and
readily available in SQL Server (or Oracle)
databases
– think differently about client design
– use triggers with caution

• Manufacturing Execution Systems are large
and complex
– many points of failure
– lots of legacy hardware and software
– great opportunities for query notifications

Questions?

