
SQL Server Notifications in a

manufacturing environment

David Johnson

www.djohn89.com

The views expressed in this presentation are my own opinions and do not

necessarily correspond to endorsements or opinions of Fiat Chrysler

Automobiles (FCA) or Mobis North America (MNA).

Outline

• Introduction to Query Notifications
– Example: software bug tracking
– Polling, Triggers, and Notifications

– Message Queues

• Case Study: Manufacturing Execution System
(MES)
– Assembly line stations, torque guns, barcode

scanners, RFID readers, and testing equipment

– Industrial PCs assist operators and enforce rules

– Examples: Polling for vehicles, test results, and
problematic incoming orders

• Conclusions

Introduction to Query Notifications

• Query Notifications are a caching mechanism

intended to alleviate repetitious queries of data that do

not change frequently

• Rather than polling a table and looking for changes:

– Register a SQL query indicating what you want to know

– Wait for SQL Server to send you a message indicating that

the table has changed*

– Perform your query or action

• *You may receive notifications whenever the server

can’t guarantee that your cache is still valid

Example: software bug tracking
• Suppose that you use a bug tracking

program which has a table like this:

• Your manager, Greg, says that everyone
should receive an email within 1 minute
whenever there are at least 3 bugs, unclosed
(Status=4) with a Severity of 3.

• How do you fulfill Greg’s request?

SQL Query for severe, unclosed bugs

• At the moment, there are 4 bugs in the
Defect table matching these criteria.

• Greg tells you to mark DefectIDs 7 and 11
as invalid (Status=2).

• But how will you know when another
severe bug gets entered into this table?

• Possible solutions: polling, triggers, and
query notifications

SELECT * FROM [dbo].[Defect]
where [Severity] = 3 and [Status] = 4

Solution 1: Polling

• You edit one of your in house applications to
repeat that SQL query every minute and send
an email whenever the criteria are met

• Good: simple, deterministic, and fast (on your
development system). Works with any db.

• Bad: Polling from multiple computers increases
the database load, which slows down all SQL
queries.

• Ugly: What if an update statement changes two
rows at the same time in between polls?

Polling Code Example

• (Pseudo-C# code, not actual implementation)

• Still has problems: how frequently to poll? How

reliable is it?

void Polling() {

int lastCount = -1, newCount = -1;

while (true) {

Thread.Sleep(1000);

SQL("SELECT newCount=count([DefectID]) FROM [dbo].[Defect] where

[Severity] = 3 and [Status] = 4;");

if(newCount != lastCount)

{

lastCount = newCount;

SendEmail();

}

}

}

Multiple simultaneous updates

• If these two updates happen between polls (or inside a
transaction), no email is sent

• Otherwise, an email will be sent. Possibly unreliable.

Before updates:

UPDATE [dbo].[Defect]

SET [Severity] = 3, [Status] = 4

WHERE [DefectID] = 1

UPDATE [dbo].[Defect]

SET [Severity] = 1, [Status] = 1

WHERE [DefectID] = 26

After updates:

Polling - Summary

• Simple but inefficient, polling is the
traditional model for getting updates

• The polling interval is always a problem

• Timers can be unreliable in Windows

Solution 2: Triggers

• You write a database triggers for AFTER INSERT and

AFTER UPDATE. The triggers redo the SQL query

and send emails using dbmail.

• Good: The trigger only runs once, and it runs only on

the database server, so only 1 email gets sent.

• Bad: The trigger always runs, even when unrelated

rows are changed. The database is slower than it

should be.

• Ugly: You accidentally introduce a bug in the trigger

and it silently corrupts your data for two days before

anyone notices!

Insert Trigger TSQL Code

• Also need to write similar triggers for update and
delete statements

• Be very careful about error handling!

CREATE TRIGGER dbo.tri_i_Defect ON dbo.Defect

AFTER INSERT AS BEGIN
SET NOCOUNT ON;

declare @newCount int, @addedCount int;

SELECT @newCount = count([DefectID])
FROM [dbo].[Defect]
where [Severity] = 3 and [Status] = 4;

SELECT @addedCount = count([DefectID])

from inserted
where [Severity] = 3 and [Status] = 4;

if(@addedCount > 0 and @newCount >= 3)
exec msdb.dbo.sp_send_dbmail;

END

Originating Statement

• The triggers run in the context of the originating
statement (i.e., the transaction)

• If trigger fails, then the originating statement fails!
(Transaction aborts.)

• The trigger always runs, even when it’s irrelevant to
the business goals.

INSERT INTO [dbo].[Defect]
([Created],[LastModified],[Summary],[Severity],[Status]
,[AssignedToUserID],[CreatedByUserID],[ProjectID])

VALUES (getdate(),null,'Changing fonts causes all text to reverse (right to left)',4,1
,null,2,1)

TRIGGER dbo.tri_i_Defect runs

Email might be sent

Transaction commits

Triggers - Summary

• Use with caution. Debugging is not easy.

• Triggers are powerful and reliable because they
always run! They must be fast because they are
integral to the server.

• Triggers run in the context of the originating
statement, which can cause seemingly
unrelated applications to unexpectedly fail
(table locks, cascading triggers).

Solution 3: Query Notifications

• You decide to try Query Notifications with C# or
VB SqlDependency to receive a callback when
the criteria are satisfied.

• Good: reliable, fast, and no redundant queries
occur. Data can’t be corrupted or lost.

• Bad: You have to learn a new way of doing
database queries.

• Ugly: It’s Microsoft specific (2005+), but Oracle
has a similar mechanism

QN Benefits

• The same notification works for Insert, Update,
and Delete statements

• The notification is guaranteed to be delivered
by the SQL Broker

• SQL Server won’t fire the notification unless the
WHERE clause is satisfied

• Still need to check COUNT(*) when notification
occurs

private SqlCommand BrokerCommand = new SqlCommand(
"SELECT [DefectID] FROM [dbo].[Defect] where [Severity] = 3 and

[Status] = 4;", BrokerConnection);

Client QN Overview

1. Initialize the .NET runtime’s background thread that

manages all QNs in the application

2. Create the SqlDependency and tell SQL server to

start listening for changes

3. Receive a callback from the .NET worker thread

a) Optional: subscribe again, go back to 2.

4. Clean up. Stop background thread, free server

resources.

Server QN Overview

1. Client A connects and creates a stored procedure, a
queue, and a SQL Broker service on a specific table.
Client A remains connected.

2. Client B performs an INSERT / UPDATE / DELETE
that invalidates the cache provided to Client A under
the Broker service.

3. The SQL Broker sends an XML message on the
queue to Client A using a server thread.

a) The server waits for Client A to acknowledge receipt.

b) The stored proc deletes the service, the queue, and itself.

4. Client B’s transaction commits.

5. Client A may create another QN (go back to step 1)

Server Broker service

• The Broker service does all of the hard work
by connecting Client A to a future Client B

Server QN Queue

• The queue is a message queue (not a table)

QN Stored Proc
CREATE PROCEDURE [dbo].[SqlQueryNotificationStoredProcedure-ba7]

AS BEGIN

BEGIN TRANSACTION;

RECEIVE TOP(0) conversation_handle FROM [SqlQueryNotificationService-
ba7];

IF (SELECT COUNT(*) FROM [SqlQueryNotificationService-ba7] WHERE
message_type_name =
'http://schemas.microsoft.com/SQL/ServiceBroker/DialogTimer') > 0

BEGIN

if ((SELECT COUNT(*) FROM sys.services WHERE name =
'SqlQueryNotificationService-ba7') > 0)

DROP SERVICE [SqlQueryNotificationService-ba7];

if (OBJECT_ID('SqlQueryNotificationService-ba7', 'SQ') IS NOT NULL)

DROP QUEUE [SqlQueryNotificationService-ba7];

DROP PROCEDURE [SqlQueryNotificationStoredProcedure-ba7];

END

COMMIT TRANSACTION;

END

• The stored proc is used for cleanup; the message is

sent by the Broker as part of the SQL Engine

QN Server Activity

• Server is almost entirely idle

• Looks like a very long wait time? Waiting tasks is
zero!?

• Task state is SUSPENDED, wait type is
BROKER_RECEIVE_WAITFOR

QN Client TSQL

BEGIN CONVERSATION TIMER ('1ef0a6d3-ec53-

e511-9b90-00059a3c7800') TIMEOUT = 120;

WAITFOR(RECEIVE TOP (1) message_type_name,

conversation_handle, cast(message_body AS

XML) as message_body

from [SqlQueryNotificationService-d22]),

TIMEOUT @p2;

• Every 120 s the time out will expire, and the
client will start another WAITFOR (to verify
network connection hasn’t dropped)

• This has negligible burden on the server

SQL Broker Operations

• The Broker dispatches a message to your
application using a background thread

• Messages are based on meta information from
your cached query and the changes to the table

• You could get unwanted notifications if:
– the server restarts

– the QN subscription expires

– ALTER TABLE, DROP TABLE, etc.

– there are too many simultaneous updates occuring
to determine which of them might invalidate your
cache

Consequences for other SQL

• There is a slight cost to other SQL statements
(ins/upd/del, not select)

• The cost is similar to updating a non-clustered index
(until the QN is removed)

UPDATE [dbo].[Defect]
SET [Severity] = 3, [Status] = 4

WHERE [DefectID] = 1

SQL Broker added overhead

Query Notifications - Summary

• Estimated benefits of QN as compared to
polling with 10 db updates per day:

– Polling: 1 query/second * 86,400 sec/day * 100

clients = 8.6 M select queries.

– QN: 100 clients * 3 queries = 300 select queries

• (1: setup, 2: callback, 3: resubscribe)

• Query Notifications are easiest in C# or
VB.NET with SqlDependency, but they are
possible in any ODBC client

• Very reliable, but slightly slower than triggers

Message Queues

• SQL Server 2005+ has a message
queuing service (Broker)

– Used by Query Notifications, Database email,

external clients

• Scales up to millions of messages per
minute

• Message management is transactional, not
protocol oriented, so it works remotely

• WAITFOR(RECEIVE…)

Transactional message mgmt.

• SQL Server makes message management
easy because it uses transactions

– If the client fails, the transaction aborts using

the standard database mechanisms

• Unlike IBM Websphere MQ, the receiving
client can be remote

• Unlike Apache ActiveMQ, queues can be
bidirectional

Uses of a Message Queue

• Each stage has at least one message queue

• Queue allows either sending or receiving computers to

crash without loss of information

• Much like email, but for programs not people

HeadquartersCustomers

order

cars

Parts suppliers

orders

parts

orders

assembly

Assembly plant

sends

parts

Questions?

• Next: Case Study in an automotive
assembly plant

www.allpar.com

www.allpar.com

Assembly Plant Computer Systems

Enterprise Resource Enterprise Resource

PlanningPlanning

• Incoming orders

• Inventory management

• Billing

• Reports & Auditing

ERP MES PLC

• Production database

• Individual computers

(workstations, testing

systems, inspections)

• Barcode scanners

• Torque guns

Manufacturing Manufacturing

Execution SystemExecution System
Programmable Logic Programmable Logic

ControllersControllers

• Motors

• Sensors

• Robots

• Lights

• Buttons

Each of these types of computer systems performs a different role in

automotive assembly.

MES Intro – Fictional Assembly Line

• Operators at each station perform assembly tasks
– E.g., Operator 1A attaches a fuel tank with two bolts. Op 1B

scans a barcode on the fuel tank

– Op 2A and 2B attach fuel line hoses and scan barcodes

– Op 3A uses a leak testing system to verify that the fuel system is
correctly installed

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

Op 1A Op 1B Op 2A Op 2B Op 3A

Intro – Assembly Line Computers

• RFID readers determine which vehicle is in which
station

• Industrial PCs display instructions to the operators and
control the other devices based on the current vehicle

• Torque wrenches are used to attach parts

• Barcode scanners are used to verify part numbers

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

RFID 1 RFID 2 RFID 3

PC 1 PC 2 PC 3

TQ 1A

SCAN 1B

SCAN 2A, 2B
TEST 3A

Intro – Torque Guns

• Manual torque wrenches (“clickers”) are too slow and
inaccurate

• Electronic torque guns are fast and precise. Operator
fatigue and injury are also reduced.
– Industrial PC tells the torque guns: how many torques on

each part (e.g., 4 bolts), how much torque to apply (50 Nm),
how many times to rotate (350°-450°)

– Torque gun responds with data about what the operators
actually did

Manual torque

wrench (“clicker”) Electric nutrunner (“torque gun”)

Intro – Barcode Scanners

• The industrial PC enforces the following rules:

• After attaching a part, the part number must be scanned to
make sure the right part was used

• The serial number must be scanned for billing

• Part numbers are often 8 digits followed by a 2 letter revision
level (e.g., 12345678AB)

• Prefixes or checksums can be used to validate these inputs

Rear axle barcodes

Part No

Serial

Intro – RFID Tags and Readers

• The integrity of the RFID reader system is critical
because the vehicles move through many different
stations

• The Industrial PC reads database records to
determine which vehicle is in which station

• Other database queries determine the operations and
parts needed at the station for the current vehicle

Passive RFID tag
RFID Reader

Review of MES

• Industrial PCs display instructions to the operators and
control the torque guns, barcode scanners, and other
devices based on the current vehicle

• The operators rely on the Industrial PCs
– To tell them which operations to perform
– To enforce quality rules

– To update the MES database server

Station 1 – Fuel tank Station 2 – Fuel Lines Station 3 – Fuel Leak Test

RFID 1 RFID 2 RFID 3

PC 1 PC 2 PC 3

TQ 1A

SCAN 1B

SCAN 2A, 2B
TEST 3A

Problem 1: Polling for vehicles

• How does each Industrial PC know that a
new vehicle has arrived in station?

– The RFID reader program updates a

database table when it reads new tags

– Traditional approach: poll the RFID table

– Alternative approach: use query notifications

• Polling is the normal computer architecture
for industrial line operations

PLCs are always in charge

• Programmable
Logic Controllers
(PLCs) often use
polling in normal
operations:

• (ladder logic)

while(true)

if(limit switch 1 is true and torque gun 5

has been used more than 4 times)

turn on alarm 32;

sleep(100);

• Polling is OK for PLCs because they use
dedicated hardware on realtime systems

• But polling is a terrible idea MES computers

Siemens Simatic PLC: a real time industrial

control system for hundreds of devices,

tolerant of extreme variations in power,

temperature, vibration, electronic noise, and

physical impact.

Polling for vehicles – RFIDTable

Tag VIN Station Timestamp

50034 1C4 1 08:30:27

50057 1C5 2 08:31:53

30029 1C6 3 08:29:38

Suppose PC 2 wants to know when a new vehicle is in station 2:

OldVIN = ‘’

NewVIN = ‘’

While true:

SELECT @NewVIN=VIN from RFIDTable where Station=2

If NewVIN != OldVIN

OldVIN = NewVIN

Display new vehicle part numbers, turn on torque guns, etc.

Sleep(1000)

Alternative: Query Notifications

• Each Industrial PC registers a QN for one
row in the database table (by Station)

• When the RF-ID reader writes a new tag,
the Industrial PC receives the notification
and provides new instructions to the
operators (part numbers, quality checks,
etc.)

• The Industrial PC then resubscribes and
waits for another notification

Problem 2: Polling for test results

• How do the operators know when the fuel
leak test has failed?

– Traditional approach: UHF radio calls (aka,

walkie-talkie) are used to verbally call out

problems

– Alternative approach: Computer generated

internal emails

• Radio calls are fast but unaccountable,
unreliable, and unrecorded.

Alternative: Triggers

• There is no PC for the test results, so the
database needs a different mechanism for
notifying people

• Whenever a failure occurs, the database
trigger sends an internal email

• iPods or other mobile devices are used to
tell the plant supervisors to deal with the
failures

Problem 3: Polling for problematic incoming orders

• How do the operators know when there is
a problem with an order that has just
arrived?

– Traditional approach: Manual inspection (or

just wait until it causes a problem!)

– Alternative approach: Use emails and

message queuing to SAP/ERP system

• Message queue is already part of billing
system

More Examples of Notifications

ERP MES PLC

Enterprise Resource Enterprise Resource

PlanningPlanning

• New parts have arrived

• A part is changing

revision levels (AB -> AC)

• A problem has occurred

with supplier deliveries

• A new build has an

impossible combination of

parts

• A repair was performed

but not double-checked

• Computer hardware has

failed (deadman switch)

• A vehicle failed a critical

quality test

Manufacturing Manufacturing

Execution SystemExecution System
Programmable Logic Programmable Logic

ControllersControllers

• A robot has failed to

perform an operation (e.g.

assembling tires or stamping

a VIN on a vehicle)

• An operator has entered a

forbidden area of the plant

during production

• Motors are failing to run

• Sensors are reading

impossible values

SQL Server Specific Advice

• Must schedule downtime to enable broker

• Stop SQL Server Agent (jobs)

• Switch to single_user

• ALTER DATABASE [Database_name]
SET ENABLE_BROKER WITH NO_WAIT;

• Fix user permissions for Broker

• Go back to multi_user

Conclusions

• Query notifications are better than polling and
readily available in SQL Server (or Oracle)
databases

– think differently about client design

– use triggers with caution

• Manufacturing Execution Systems are large
and complex

– many points of failure

– lots of legacy hardware and software

– great opportunities for query notifications

Questions?

Protocol oriented message mgmt.

• Just try once:
– Sender just sends each message once,

doesn’t care if client receives it

– Client doesn’t acknowledge messages, and it
might not even put them in any particular
order or remove duplicates or detect
corruption

– Optimized for speed and simplicity, not
reliability

– Analogous to UDP, streaming video, etc.

Message mgmt. 2

• Server with state (at least once delivery):
– Server assigns numbers to messages and

requires an acknowledgement of each
message number.

– Client still doesn’t maintain state, but it does
send acknowledgements. Delivery is
guaranteed if server resends messages.

– Application must ignore duplicate messages
(idempotency).

– E.g., Advanced Message Queuing Protocol

Message mgmt. 3

• Both server and client have state (exactly once

delivery):

– Both server and client have message numbers, and

server must retransmit unacknowledged messages
within the current window.

– Client must perform reordering, remove duplicates,
and detect corruption with checksums.

– Latency can become a problem, but exactly once
delivery is guaranteed

– E.g., TCP

Why polling is bad for MES

• MES computers often run a general purpose OS (e.g.,

Microsoft Windows)

– Windows is not a real-time OS, so timers aren’t guaranteed

to tick

– Programs become unresponsive to OS and to users

– Polling makes crashes difficult to recover because error
handling inside the while loop becomes messy

• Tragedy of the commons

– Database becomes overloaded with polling queries

– Database locks get held for extended periods of time

– Excessive network traffic causes packet loss and latency

Reliability

• Sources of unreliability

– Polling: timers can be unreliable in Windows; choice

of interval is difficult

– Triggers: very reliable, but possibly harmful to

unrelated queries

– QNs: very reliable, but be careful about handling

network socket errors

• Suggestions

– Always do simulations and testing before

deployment!

– Always have a backup plan

