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 Brief introduction to Machine Learning
— Frequentist statistics
— Bayesian statistics
* Machine Learning in practice
— Precision vs. Recall
— Classification vs. Regression
« Automotive Assembly Defects
— Torgue tool operations
— Common defects and errors
— Case study: simulated data from 49,000 vehicles
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What is Machine Learning?

 Machine Learning (ML) is the subfield of
computer science that gives computers the
ability to learn without being explicitly
programmed*
— Using statistical analyses
— Processing large amounts of data
— Adapting without new programming

LArthur Samuel, 1959. from Wikipedia
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Machine Learning

« Using statistical analyses

— Statistics 101 still applies:
 Need a model, data, and an objective function

— But prediction is more important than model
validation for ML

* Processing large amounts of data

— Since analysis Is automated or semi-automated,
more data Is usually helpful

» Adapting without new programming

— Unlike general purpose artificial intelligence, ML Is
data-driven
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Examples of Machine Learning

Product suggestions
— Amazon suggested products; Netflix similar films

Cybersecurity
— Automatically identifying malware based on actions and/or file signatures

Job ads / HR recruiting
— Linked In suggested jobs; automated resume processing

Google AlphaGo
— World champion of Go beaten 4-1.

Criminal sentencing

— Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS)

Tesla's autopilot system
— Camera, radar, GPS, ultrasonic sensor => follow lanes, adjust speed
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* Next: Frequentist statistics review

http://dilbert.com/strip/2013-02-02

Jan 28, 2017 Machine Learning - Automotive Defects



Frequentist statistics

Some distribution
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Gaussian

99.7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations

-

—

68% within
<— 1 standard —>
deviation

« Gaussian model: exp(-(x-p)?/(262))
— Model: Only two parameters
— Data: requires relatively few points for a fit (~ 10)

— Obijective function: goodness of fit (x? test)
Figure from Wikipedia
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Questions for the Freguentist

* Model validation

— Why would you believe that this data was from a
Gaussian distribution?

— What would refute that belief?
— How certain are the fitted parameters?

* Model prediction
— How certain are new data points from the model?
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I HAVE A AT YOUR AGE WORSE YET, ALL BUT THE STATISTICS
SOLUTION THERE ARE OF THE SINGLE EVENTUALLY FAVOR
FOR YOUR MORE SINGLE WOMEN ARE DATING MEN.

DATING MEN THAN MARRIED MEN OR

DILEMMA., X SINGLE WOMEN. SERIAL KILLERS.

AT AGE 80 THERE ARE ARE YOU SAYING T SHOULD

THREE TIMES AS MANY WAIT UNTIL I'M OLD...
AVAILABLE WOMEN AS AND DATE 80-YEAR-OLD

MEN BECAUSE MEN DIE WOMEN?
YOUNGER .

NO. I WOULDN'T
WAIT ...

© 1992 United Feature Syndicate, inc.

http://dilbert.com/strip/1992-01-26
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Bayesian statistics

Bayes’ P(©[X) _ _
Theorem: posterior P(X) P(X)
data data
« Bayes’' Theorem combines and

observed data to infer the posterior distribution

* Frequentist models are still used In the
, but the IS hew

* This allows us to answer the guestions on the
previous slide ("how certain ...")
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Bayesian Example - Lunch

lunch orders

File Edit
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* What should we get for lunch?
 Where are we likely to choose?
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Bayes' Lunch

P(R=Restaurant

IN=Name) B P(N) P(N)
posterior

* Using Bayes’ Theorem, we can predict the
Restaurant (R) given the Name (N) of the
person whose turn it is

* Maximizing P(R|N) is a common algorithm
* Non-parametric; derived entirely from
spreadsheet.
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Statistics Summary

* Frequentist statistics focuses on model
evaluation, assuming parameters are
deterministic

« Bayesian statistics uses prior and posterior
probabilities to quantify the uncertainties of both
the model and the data

* Both are still relevant, but they require a
statistician to formulate and evaluate models
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Frequentist vs. Bayesian XKCD
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Machine Learning In practice

* Email spam filtering

— What is the probability of each word in a dictionary
appearing in a spam email vs. a non-spam email?

— Using Bayes’ Theorem, infer posterior probabillity,
mark spam if P(spam) > cutoff (e.g., 90%)
* What goes wrong if the wrong decision Is
made”?
— Spam marked as non-spam
— Non-spam marked as spam
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Not spam
Not spam

Not spam [

Not spam
Not spam

Not spam

Email spam

Not spam

Not spam

| 1conflicting part numbers detected on Seq 5190
Eroadcast Alert

1 1conficting part numbers detected on Seq 5020

-1 1confiicting part numbers detecied on Seq 4340

Eroadcast Alert

that identify non-spam: P( | non-spam) = 0.70, P(

non-spam)=0.58, ...

that identify spam: P( | )=0.89, ...

 Naive Bayesian classifier:
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Email spam

Predicted: | Predicted: | Totals
Not spam

95 (TP) 5 (FN) 100

Recall
(sensitivity) =

TP/(TP+FN) =
1 (FP) 99 (TN) 100 0.95

96 104 200

Precision (positive predictive value) =
TP/(TP+FP) = 0.99

 Classification algorithms aren’t perfect
 |s FP worse than FN? Always?
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Precisn vS. Recall tradeoff
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 ROC curve: the relative errors can be compared by
adjusting the parameters of the algorithm

* E.g., consider more words to be spam -> better recall,
Worse precision
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Classification vs. Regression

* Model output type makes important differences
to the algorithms available

» Classification: the model output is a
categorical variable with discrete values

— E.g., labels, attributes, colors, statuses, 1st, 2nd,
3rd, etc.

* Regression: the model output Is a continuous
variable
— E.g., measurements, sizes, physical values
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Examples of outputs

» Classification problems:
— Predict products that a consumer might want to buy
— Predict who will vote for a given candidate
— ldentify ZIP codes from handwritten envelopes

* Regression problems:
— Predict stock prices based on company performance
— Predict chances of a patient having a second heart attack

— ldentify sources of cancer risk from clinical prostate samples
— Estimate time to failure for a piece of industrial equipment
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Machine Learning Algorithms

* k-Nearest Neighbors (k-NN):

— The oldest classification algorithm
— Successful due to simplicity

* Linear regression:
— The oldest regression algorithm
— Surprisingly flexible with generalized linear models

* Many other algorithms exist
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K-Nearest Neighbors

Error Types:
 No error

« Trigger loss
 Cross-threaded

X2 (torque, Nm)

X1 (rundown number)

« Suppose you wanted to predict what type of error will occur from the
features of rundown number (1, 2, 3...) and torque value (e.g., 10 Nm)

 When you get a new point at ,, which error is most likely?
« Suppose k=3. 3 nearest points are:
* Majority vote:

hthslps:[/en.Wik_ipedia.org/wiki/K-nearest neighbors_algorithm
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kK-Nearest Neighbors (2)

X2 (torque, Nm)

X1 (rundown number)

* Predict all the points!

» Practical limitations: can’t use all the data due to curse of dimensionality, so
use dimensionality reduction preprocessing or representative data sub-
sampling

 How do you pick k? What does it mean?

hth'EPs://en.Wik_ipedia.org/wiki/K-nearest_neighbors_algorithm
a
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(© is all of the “known” parameters; x is all of the observed data)

http://www?2.stat.duke.edu/~mw/fineart.htmi
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http://www.wranglerforum.com/
Jan 2013 Winner “There | Fixed It”



Automotive Assembly - Torque

 Video — Atlas Copco Electric nutrunner

https://youtu.be/4an9H6VTXVC
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Torgue tool operations

 Normal mode
— Torgue is inside engineering range (min, max)
— Angle Is Inside engineering range (min, max)
— Duration Is acceptable

* Failure modes
— Failed to reach min torque or angle
— Exceeded maximum torque or angle
— Operator running behind

Jan 28, 2017 Machine Learning - Automotive Defects
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Common defects and errors

Trigger loss
— The operator let go of the trigger too soon

Wrong number of torques:
— E.qg., Fuel tank has 4 bolts, so 4 torques required
— Operator only got 3 done before running out of time

Part is wrong or defective
Cross threading
— The nut slipped or was incorrectly loaded

Electrical issues
— Power failure
— Ethernet failure

Tool breakdown (calibration or mechanical)
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* 8 Production lines, ~250 operators, ~400
vehicles per shift
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Case study

« Data from a preliminary 3 month study:
— 49,000 vehicles
— 180 torque tools
— 4.37M rundowns (4.35M first time successes)
— 8,500 failures on 7,000 distinct VINs

« Approximate failure rate: 0.0019 failed torques
per required rundown

* Due to confidentiality concerns, the data has
been generated from a simulation
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Worst torque tools

TM Isolator R FRT/RR L FRT/RR Auto Heat Skid Plate Rear Stab Frt Exhaust Frt & Rear Power Strg Skid Plate Tow
Frame side 234 CA Frm 234 CAFrm  Shield RH Bar to Pipe-Y(LH) track bar(L) Line to Strg LH Hook/Eye
Frame(R) Gear

 4.37M rundowns: 8,500 errors total
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What's wrong with TM Isolator?
p

/

W

Project-JK. COuEs e et TN co:n‘

« Transmission isolator — fully automated torque robot.
Only 3 torques, 40 — 70 Nm (from repair manual)
* Why does this torque tool fail so often?

http://project-jk.com/jeep-jk-write-ups/
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RepairTech Loc

« Upon further investigation, the ethernet
communication between the robot and the torque tool

was found to be faulty (replacement pending)
* Angle failures are due to rubber / steel nut interface



Predicting failures

* Avalilable features in the model.
— All part numbers
— All torque values (torque, angle, OK/NG)
— All sales codes (export nations)
— RHD vs LHD, manual vs. auto trans., gas vs diesel
— Number of rundowns, last calibration, etc.

« Desired outputs:
— Time to failure on torque tools
— Probability of requiring jumps for each vehicle
— Predict type of repairs given vehicle information

 Still a work Iin progress (unbalanced data)
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Preventative Maintenance

 Current maintenance schedule is fixed
— E.g., every month, tools X, Y, and Z must be calibrated

* Proposed:
— Predict time to fail based on actual usage
— Schedule maintenance based on failures

* Probable predictors:
— Last date of calibration
— Total rundowns since calibration
— Min, max torque
— Drifting residuals

Jan 28, 2017 Machine Learning - Automotive Defects
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Unacceptable Maintenance Schedule

http://piximus.net/fun/there-i-fixed-it-9



Auditing

 Manual audits are used to intentionally
Introduce errors and verify that the production
line stops and produces alarms as intended

— LPA (Layered process audit)
— EPV (Error proofing validation)

« Scheduling Is fixed
— Every week, stations A-P are audited, then Q-Z, etc.

» Current problem: pencil whipping

* Proposed solution: schedule audits based on
fallures
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I'll need to see some process
documentation for what you're | was just sharpening this pencil!
doing there.

Oh...then I'll need training
and safety procedures, too.
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http://auditstuff.com/audit-jokes/
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Future work

» Goals for the future:
— Get python sklearn to work in production
— Automate the analysis
— Do a trial run with live data

— Schedule audits and maintenance based on model,
then compare failure rates to similar interval

* Problems right now:
— Volume of non-predictive data
— False positives
— Qverfitting and unbalanced data
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Overall Conclusions

* Machine learning is powerful
— Convert existing large datasets into predictions
— Semi-automated or automated analysis
— Wide range of applications
* Limitations
— Only works if the future looks like the past
— Not a general purpose Al
— Not always better than traditional statistics
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My HOBBY: EXTRAFPOLATING

AS YOU CAN SEE, BY LATE

NEXTMONTH YOU'LL HAVE

OVER FOUR DOZEN HUSBANDS,
NUMBER OF ¥, BETTERGET A
HSSAND: _ BULK RATE ON

, WEDDING CAKE.

By the third trimester, there will be hundreds of babies inside you.

https://xkcd.com/605/
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