
Building Your Own Collaborative
Editing Web Forms For Free

By David Johnson
djohn89@gmail.com
www.djohn89.com

Outline
● How does collaborative editing with Google Docs work?

○ What’s the Google Realtime API?
○ Why use Operational Transformations vs. CRDTs?

● Intermission: JK Wrangler and JT Scrambler (new pickup
truck)

● How can you build your own collaborative editing system
from existing web forms?
○ Examples of my own work with collaborative editing

Collaborative Editing

Basic concepts: the same document is edited by multiple users on different
devices simultaneously (e.g., Google Docs, Sheets, Slides)

The users’ actions include: insertions, deletions, formatting, selection, copy, paste,
etc. Unfortunately, these operations don’t commute, making it hard to keep the
documents the same on every device.

Client C1

Lorm ipsum
dolor ...

Client C2

Lorem ipsum
dolor ...

Client C3

Lorem ipsum
dolor ...

Most operations don’t commute

● Commute: A+B = B+A
● But A-B ≠ B-A
● Real life: wash clothes then dry

OT

Source

● Commute: editing different text
● Doesn’t commute: editing same text
● Real life: appending text

http://www.lukesurl.com/archives/comic/519-smooth-operator

How does collaborative editing with Google Docs work?

The shared state (a text document) is maintained by sending messages that contain
individual operations (inserting or deleting text). These operations are transformed
such that every client will have the same state after all messages are received
(eventual consistency).

Client C1 Client C2

Google
server

Lorm ipsum
dolor sit amet
...

Lorm ipsum
dolor ...

M1: C1 inserted
‘sit amet’ after
position 16

M1: C1 inserted ‘sit
amet’ after position 16

Lorm ipsum
dolor sit amet
...

New state

3-way merge version control (diff and patch)

Google Realtime API

https://developers.google.com/google-apps/realtime/overview

● Client side javascript library implementing operational
transformations (OT)

● Requires Google-based authentication and storage in
Google Drive

● Used by Google Docs, Slides, Sheets, etc.

https://developers.google.com/google-apps/realtime/overview

Operational Transformation (OT)
Dating back at least to the 1989 Grove System, OT provided the first practical way to
maintain a complex shared state with eventual consistency.

Client C2

Lorem ipsum dolor ...

M1 (remote): C1 inserted
‘sit amet’ after position 16

Lorem ipsum
dolor sit amet
...

State 2

M2 (local): C2 inserted ‘e’
after position 2

+ } T(M1, M2): C1
inserted ‘sit
amet’ after
position 17

State 1

Operations M1, M2 Transformation

OT

OT Visualization Demo

https://operational-transformation.github.io/visualization.html

OT

https://operational-transformation.github.io/visualization.html

Google I/O 2013 presentation

“The Secrets of the Drive Realtime API” video

OT

https://youtu.be/hv14PTbkIs0?t=860

● Operations must be transformed so that they commute
● Message delivery is assumed to be reliable and in-order (*)
● Every client and also the server must implement OT in the

same way
● Preservation of user intention is difficult (but solved)

OT Overview

Op1 Op2 Op3

Op1 T(Op1, Op1) T(Op1, Op2) ...

Op2 T(Op2, Op1)

Op3

Transformation Functions: T(x, y) must implement every possible pair of operations

OT

OT Challenges

● OT functions mutate the operations (insertion, deletion, selection, copy, paste,

etc.) so that all operations will commute and eventually converge
○ Unfortunately, many OT algorithms are flawed or very difficult to implement correctly

○ A single failed transformation will ruin the whole scheme

○ Transaction Property 2 (TP2) is very hard to achieve

● Plain text editing is the easiest to get right, but formatting operations add a lot

of business value (and complexity)

● Google Wave was discontinued in 2010 due to lack of user interest

● OT is still used by Google Drive applications (Docs, Sheets, etc.)

OT

Newer Alternative - CRDTs
Conflict-free Replicated Data Type (CRDT): a distributed data type that is
guaranteed to converge to a shared state. No math! E.g., Riak, Voldemort, or
Cassandra

Position Character

0 L

1 o

2 r

2.1 e

3 m

M2 (local): C2
inserted ‘e’ after
position 2

Added set Added set

Position Character

0 L

1 o

2 r

3 m

“Lorm” “Lorem”

CRDT

http://basho.com/products/
http://www.project-voldemort.com/voldemort/
https://cassandra.apache.org/

CRDTs - tombstone function
Deletions are handled by creating a second set of deletions (“tombstones”). The
final string as rendered by sorting the sets and removing the elements that are in
the Remove-only set.

Position Character

0 L

1 o

2 r

2.1 e

3 m

Added set

Position Character

0 L

1 o

2 r

2.1 e

3 m

M3 (local): C2
deleted ‘o’ after
position 1

Added set

Position Character

1 o

Removed set

“Lorem” “Lrem”

CRDT

Tombstones: not for the faint of heart

● Append only sets (Added,
Removed) provide correctness
guarantees

● The Remove-only set is a form
of garbage collection (*)

● There are serious performance
issues in distributed NoSQL
databases with the
accumulation of tombstones

CRDT

Source

https://opencredo.com/cassandra-tombstones-common-issues/
https://opencredo.com/cassandra-tombstones-common-issues/
https://opencredo.com/cassandra-tombstones-common-issues/
https://www.pinterest.com/funeralsource/funny-to-the-grave/

CRDT details
● Real life CRDTs (Cassandra): Netflix, Twitter, Wikimedia

● Implementation details: vector clocks - every character is assigned an
identifier based on its character position, editor ID, and monotonic local
operation counter (strict, total ordering)

● Multiple editors are handled by taking the union of each Added set and the
union of each Removed set

● Convergence is guaranteed because no identifier is ever deleted or reused.

● No server is required to limit concurrency or assign an order to the operations

● Downsides: the length of the identifiers is unbounded, sorting can become
slow, and the size of the Removed set is unbounded

CRDT

Summary: OT vs CRDTs

● OT has a long history with some well-known problems and very difficult
implementations, but it generally works (*) and uses little memory or computation

● CRDTs are much newer, offer better guarantees of correctness, and can be
simpler to implement (*), but they can become slow due to memory usage and
computation required

● Some equivalence exists for these two ideas at a theoretical level, but the
implementations differ significantly

● Next: intermission for Jeep video, then practical implementations with free
software

CRDTOT

Intermission - JK Wrangler conversion to truck

Enthusiasts have been converting their Wranglers to trucks for years. Conversion
kits cost between $6,000 to $21,000+ depending on features.

Youtube - Jeep Wrangler Unlimited Pickup Conversion Revealed

https://www.extremeterrain.com/offroad-dv8-truckconversion-0717-jeep.html
https://www.rubitrux.com/jeep-jk-ext-conversion.html
https://youtu.be/oDTkElT1qPI?t=23

Example conversion kit: Mopar JK-8
● Released at Moab 2011
● Dealership price: $5,500 parts, $5,000

installation (varies)
● Time: 30 day parts delivery, ~2 weeks

installation (35 hours shop time:
welding, painting)

● 3 year, 36,000 mile warranty only
applies if installed by dealership
technicians

● Other kits: AEV Brute DC350 (retains
rear seats), JKUte, Crew

https://en.wikipedia.org/wiki/Moab_Jeep_Safari
https://www.normandinchryslerjeep.net/jeep-wrangler-jk-8-pickup-conversion-kit/
https://www.aev-conversions.com/vehicles/brute-double-cab
https://gr8tops.com/shop/jeepmodels/jk-wrangler/jeep-wrangler-jkute-truck-conversion-kit
https://www.bruiserconversions.com/jk-crew/

Intermission - JT Wrangler Pickup (Scrambler)

Most of my time is going towards the new Wrangler Pickup (Scrambler). Possible
options: longer frame, new domestic diesel engine, even bigger axles, and better

towing capacity.

Youtube: 2019 Jeep Scrambler Pickup (JT)1981-1985 CJ-8 Scrambler
Wikipedia - fuel economy and public perception

doomed it

http://www.jeepscramblerforum.com/
https://youtu.be/knnbzNqgi1I?t=26
https://truckyeah.jalopnik.com/the-new-jeep-wrangler-truck-is-called-the-jeep-scramble-1798307214
https://en.wikipedia.org/wiki/Jeep_CJ#CJ-8_.28Scrambler.29
http://www.4-the-love-of-jeeps.com/jeep-scrambler.html

End of Intermission
● How does collaborative editing with Google Docs

work?
○ What’s the Google Realtime API?
○ Why use Operational Transformations vs. CRDTs?

● Intermission: JK Wrangler and JT Scrambler (new
pickup truck)

● How can you build your own collaborative editing
system from existing web forms?
○ Examples of my own work with collaborative editing

Practical implementations of Collaborative Editing
● All the work is done for you, but it’s not free:

○ Google Real-time API (Docs, Forms, etc.), Microsoft Office 365
○ FireBase, Backendless, Parse
○ Google Drive, Dropbox, Microsoft OneDrive

● Free but not real-time:
○ Version control software (e.g., Git)
○ Wikipedia, reddit, digg

● Free but you have to do some work:
○ Editors:

■ CKEditor, CodeMirror, Ace Editor
■ Collabedit, Etherpad

○ Data models:
■ TogetherJS
■ ShareJS / ShareDB

https://firebase.google.com/use-cases/
https://backendless.com/
http://parseplatform.org/
https://ckeditor.com/
https://codemirror.net/
https://ace.c9.io/
http://collabedit.com/
http://etherpad.org/
https://togetherjs.com/
https://github.com/josephg/ShareJS
https://github.com/share/sharedb

Why not use an existing solution?

● Money: $10 per user per month (Google Suite), $20/user/month
(Microsoft E3)

● Off-site dependency: only works if public Internet works
● Legal liability: off-site server could lose data or disclose it

inappropriately
● Loss of control: unscheduled downtime, breaking API changes, server

maintenance, data format changes, browser incompatibilities
● Obsolescence: Product is discontinued (e.g., Google Wave, Chat,

Labs, Trends, etc.) or reduces functionality with no migration path
● No native app access: must use web browser and javascript (Google

RT-API)

CKEditor

CKEditor 4 is a free, full featured HTML editor. Works great for a single user. Image
uploading is not free.

CKEditor 5 is a rewrite with OT and some collaborative features (“Letters”) - but it’s
currently in alpha and the collaboration is not free.

https://ckeditor.com
https://ckeditor5.github.io/

TogetherJs
TogetherJs is a free, open source javascript library made by Mozilla in 2013
that:

● Synchronizes the DOM between browsers
● Performs OT on text fields
● Uses a simple message relay server

○ Locally hosted server is freely available (NodeJs with websockets)
● Provides chat functionality and user operation feedback

It does not provide storage or authentication. It works with almost any existing
webapps by design (see architect’s blog post).

https://togetherjs.com/
http://www.ianbicking.org/blog/2013/10/togetherjs-a-postmodern-tool.html

TogetherJS demos

Click to launch demo

https://togetherjs.com/examples/drawing/

My Examples of Collaborative Editing

Systems I’ve implemented:

● Time and attendance (Manning)
● Consolidated Shift Notes

These were real webapps that needed to be created or
enhanced with collaborative editing functionality

Ex. 1: Manning Reports

Twice a day, the Production department must record attendance for approximately
200 operators and support staff across various teams.

Human Resources must enforce policies (excused vs. unexcused absences).

When HR and Production supervisors edit the same report, hilarity ensues!

More Manning Reports

Example of attendance review process: employee does not show up for scheduled
shift. Supervisor assigns 1 attendance point for Unexcused absence and calls in
another employee (involuntarily coverage). Employee files grievance contesting the
attendance point and claims FMLA exception (take care of sick family member). HR
investigates and requests doctor’s note. Employee provides note; HR verifies
accuracy and removes point if approved.

Collaborative Editing for Manning Reports

Different fields need different event handlers and types of synchronization

Attendance point values cause other reports to change

(This used to be an Excel file on a network drive, which had a long history of
causing problems.)

SELECT boxes:
onChange, save

Short text (no
OT)

Longer text
(needs OT)

TogetherJS integration for Manning Reports

● Run node.js server on internal production network using hub\server.js:

● Load together.js in client side webpage:

C:\Users\Administrator\togetherjs-develop>\nodejs\node.exe hub\server.js --port 8081 --host 0.0.0.0

<script>

var TogetherJSConfig_hubBase = "wss://myserver.internal.net:8081/ws";

// more config...

</script>

<script src="js/togetherjs-min.js"></script>

● DOM events will automatically propagate changes between browsers
● Last user submits form or automatically saves state via AJAX to server

Ex. 2: Consolidated Shift Notes

● Each department fills out a shift note: a summary of all important issues
occurring during that shift

● The other shift reads the shift notes so that they know the situation they are
walking into, then writes second shift notes

● At a daily management meeting, both sets of notes are reviewed
● Goals: accountability, problem recurrence prevention, various Key

Performance Indicators (KPIs)
● Previously this was an email process. Many emails were generated then lost

over the years; the emails were poorly formatted and difficult to search;
attachments clogged up inboxes

Production & Quality Shift Notes

● Supervisors kept forgetting to send the emails
● Too many emails and too many attachments
● Other emailed notes: materials, maintenance, tooling, IT, safety

New Collaborative Editing Website for Shift Notes

Information Technology (IT)

Environment, Health, and Safety (EHS)

More Shift Notes

Example of Editing - Quality Shift Note

Supervisor types note into CKEditor (HTML editor in <textarea>)

Example of Photo Upload - Quality Shift Note

● Basic jQuery Mobile site with custom photo uploading servlets
● Photos are automatically resized and attached to emails
● Responsive layout for mobile and desktop browsers

Collaborative Editing for Shift Notes
● TogetherJS doesn’t work with HTML editors (CKEditor) and CKEditor 5.0 is

not ready yet
● My solution for now: use ShareJS

To make changes to a document, you can call one of these three methods:

● doc.create(type, [data], [context], [callback]): Create the document on the server with the given type and initial data.
● doc.submitOp(op, [context], [callback]): Submit an operation to the document. The operation must be valid for the

given OT type of the document.
● doc.del([context], [callback]): Delete the document on the server.

Warnings to others: don’t try to use diff/patch on HTML documents! Google tried this with Differential
Synchronization, and there were endless bugs due to DOM parsing errors and browser
incompatibilities.

https://github.com/josephg/ShareJS
https://neil.fraser.name/writing/sync/
https://neil.fraser.name/writing/sync/
https://news.ycombinator.com/item?id=15600082
https://news.ycombinator.com/item?id=15600082

Discussion and Conclusion

● Operational Transformation and CRDTs are
the two main methods of synchronizing data in
between web browsers

● Google Docs uses OT, but you have to use
Google servers

● With an editor and a data model, you can build
your own solution for free!

End

Source: Arthur Plotnik’s The Elements of Editing: A
Modern Guide for Editors and Journalists (New York:
Macmillan, 1982).

https://mleddy.blogspot.com/2011/12/change-modify-revise-alter-rewrite.html

Where do irreconcilable conflicts come from?
● Multiple users
● Same data
● Spread out over time
● Loss of order of operations
● Result: Large, irreconcilable diffs

