
1

REAL-TIME MESSAGING TO WEBAPPS FROM A PRODUCTION
DATABASE

David Johnson, djohnson@ommc.com, www.djohn89.com



2

OUTLINE
Automotive Assembly Line
Break
TCP Sockets Review
Websockets

The goal of this talk is to describe an automotive assembly line and to
encourage web developers to use websockets in their web applications. See

 and  for more details.RFC 6455 Websocket API

https://tools.ietf.org/html/rfc6455
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API


3

AUTOMOTIVE ASSEMBLY LINE
Electric nutrunners/bolt runners
Barcode scanners
RFID
Alarms



4

ELECTRIC NUTRUNNERS/BOLT RUNNERS

Nuts and bolts are assembled 
Popular manufacturers: , 
Ethernet communication module records exact torque, angle, rundown
count, etc. per engineering specs

using torque tools
Stanley Atlas CopCo

https://en.wikipedia.org/wiki/Electric_torque_wrench
http://www.stanleyengineeredfastening.com/brands/stanley-assembly-technologies/products/threaded-fastening/electric
http://www.atlascopco.us/usus/products/assembly-tools/1401319/


5

 

BARCODE SCANNERS

Before attaching a part, the part number must be scanned to make sure the
right part was picked
The serial number must be scanned for billing and inventory management
A computer program records these scans into a database



6

ERROR PROOFING



7

  

RFID

 ride on a  tracked by RFID tags and antennas
Real-time tracking is critical for correctly building vehicles
A computer program records the RFID events into a database

Skillets conveyor system

http://centralconveyor.com/automotive/skillet-conveyor/
http://www.dmwcc.com/skillet-systems


8

HOW ALARMS WORK
1. The  (e.g., a vehicle presses a limit switch

before the torques are done), stops the production line, and turns a bit on
2. A communication program sees the bit turns on and logs it into a database
3. The cell leader sees the alarm and helps the operator to finish their job, and

the error condition is removed
4. The PLC turns off the bit and allows the line to resume moving

PLC detects an error condition

https://en.wikipedia.org/wiki/Programmable_logic_controller


9

THEORETICAL ASSEMBLY LINE

Automotive assembly lines are primarily composed of torque tools, barcode
scanners, RFID, and alarms
Operators must complete their jobs inside the workstation defined by the
RFID antennas or else alarms will be activated
The events from these systems comprise the Manufacturing Execution
System (MES), a type of supervisory control and data acquisition ( )SCADA

https://en.wikipedia.org/wiki/SCADA


10

VIDEO: TSAP ASSEMBLY



11

SUMMARY OF VIDEO
Multiple assembly lines (frame, axle, ML1, ASRS, ENG, ML2)
RFID used in each line to track skillets
Problems are located using alarms



12

DECKING



13

FINISHED PRODUCT



14

EXAMPLES OF APPLIED WEBSOCKETS
Andon Board Upgrade (alarms, productivity calculations)
Broadcast Elimination (paperless production)
RFID Tracking (faster internal messaging)
RepairTech webapp



15

 

OLD ANDON BOARD

Light bulbs on a stadium-style scoreboard
Shows 2 alarms (ML1, ML2)
Limited to simple statistics



16

 

NEW ANDON BOARD WEBAPP

New 80" TVs with JSP/Tomcat and CometD servlets
Shows up to 8 alarms
Calculates detailed statistics



17

ANDON BOARD MESSAGES
PLC turns bit on (conveyor stopped due to no torque at station 6)
Communication program sees bit, logs to database and sends CometD
message to Andon Board servlet: {type: Alarm, Line: ML1, Station: 6, Message:
Torque Overrun DC Tool}
Andon Board javascript receives message, displays alarm to alert supervisor



18

ANDON BOARD EXAMPLE



19

BROADCAST ELIMINATION

Printed broadcasts were wasteful ($50,000+ per year)

... and became unnecessary (computer error proofing, barcode scanners,
digital displays).
So we replaced them with tablet PCs displaying a webpage



20

BROADCAST DISPLAY WEBAPP

Broadcast Display webapp receives messages from RFID system: {type: Arrival,
Line: ML2, Station: 4, SKID: A053, VIN: 1C4... }

It receives messages as new vehicle orders come in (for materials tracking)
It sends messages to the RepairTech webapp (to request repairs)



21

REPAIRTECH WEBAPP

This webapp tracks vehicles that need repairs

Repair Technicians physically fix the vehicle and then fill out a form
Quality Inspectors double-check the repairs
Internal statistics are calculated (FTC, MTTF)



22



23



24



25

MESSAGING OVERVIEW

Using webapps has been very helpful for efficient communication of events
in MES (Alarms, RFID, etc.)
Websockets are a natural fit for this system
CometD integrated easily with existing Java infrastructure and internal
websites



26

CONCLUSIONS - AUTOMOTIVE ASSEMBLY LINE
Torque tools, barcode scanners, RFID, and alarms comprise the
Manufacturing Execution System
Messaging patterns vary based on physical design and engineering
constraints
Andon boards, Broadcast Display, and RepairTech use Websockets to display
information to production team



27

BREAK



28

 

TCP SOCKETS REVIEW
TCP connects two endpoints (defined by IP addresses and port numbers) and
allows symmetric, byte-oriented data transmission over a socket (as if reading

from and writing to a file).

192.168.1.5:22

Server
192.168.1.15:5807

Client

Think of the socket as a file.
You have to define a message format!
The server listens on a port; the client connects. Aʿerward, transmission is
symmetric.



29

HOW MANY BYTES CAN YOU READ IF YOU
REQUEST TO READ 1000 BYTES?

0
10

1000
2000



30

TCP SOCKETS AS FILE IO
Disk file operations: open, close, read, write, seek. File format is defined by
application
Socket operations: open, close, read, write. No seek. Network format is
defined by application
Asynchronous vs. synchronous operations: framing, latency, reliability,
complexity

Sockets are very similar to disk files, but the reliability is much worse.

How much data did you actually read or write? How do you know if the other
party is still there? Can your program block forever?



31

CLASSIC SOCKET PROBLEMS - PARTIAL BUFFER READS
You request to read 100 bytes (a complete message) from the socket. You

receive 30 bytes.

Message Framing fixes this problem. Messages must have a length prefix or
specific bytes at the beginning and end. Continue reading 70 bytes.

You read 170 bytes. The 70 bytes are for the first message; the next 100 bytes
are for a subsequent message.

TCP guarantees the order of data is preserved, but it doesn't guarantee the size
of any individual operations.



32

CLASSIC SOCKET PROBLEMS - CONNECTION SILENTLY
DROPS

You request to read 100 bytes, but you never receive any data. How do you
know if the other party is still there?

Keepalive messages fix this problem. Every 15 seconds, you write a dummy
message to the server, which echoes another dummy message (ping/pong). No

Keepalive means the connection dropped.

TCP can only detect network failures by writing data to the socket. Reading is a
silent operation.



33

CLASSIC SOCKET PROBLEMS - ASYNCHRONOUS
OPERATIONS

Can your program block forever? You request to write 10,000 bytes (100
messages), but the OS only writes up to 1,000 bytes in each data frame.

The write() calls begin to block, waiting for acknowledgement because the
receiver has a finite buffer size (the TCP window).

TCP cannot guarantee that a read or write operation completes by any specific
time, so your program must be asynchronous to remain responsive to the user.

Use callbacks, events, threads, or queues.



34

SOLUTIONS TO CLASSIC SOCKET PROBLEMS
Any TCP-based protocol must use Message Framing, Keepalive Messages, and
Asynchronous Operations.
A good protocol and library will fix these problems for you, but your
application must be aware of them
Websockets includes free Message Framing, but your library still needs to
provide Keepalive Messages, and your program must still use Asynchronous
Operations.



35

TCPVIEW DEMO

Download TCPView here (free!)

https://technet.microsoft.com/en-us/sysinternals/tcpview.aspx


36

LONG POLLING
Long Polling is an older alternative to websockets. Think of an HTTP request

that doesn't end.

Every request with long polling must resend all headers (~800 bytes out of a
1500 byte MTU). Cookies can eat up a lot of bandwidth. Most headers don't

change, anyway.
GET /servlets/SomeServlet HTTP/1.1
Host: www.somehost.com
User‐Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en‐US; rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5 (.NET CLR 3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept‐Language: en‐us,en;q=0.5
Accept‐Encoding: gzip,deflate
Accept‐Charset: ISO‐8859‐1,utf‐8;q=0.7,*;q=0.7
Keep‐Alive: 300
Connection: keep‐alive
Cookie: JSESSIONID=j0Uto+XV00fds‐qZCfTUNA__.h422a
Pragma: no‐cache
Cache‐Control: no‐cache



37

WEBSOCKETS
A websocket is an Upgraded HTTP connection (from HTTP/1.1 to WS/WSS)
Minimal message framing; no headers; server can push data to client.
All TCP Caveats apply to websockets



38

WEBSOCKET DATA FRAME

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+++++++++
|F|R|R|R| opcode|M| Payload len |    Extended payload length    |
|I|S|S|S|  (4)  |A|     (7)     |             (16/64)           |
|N|V|V|V|       |S|             |   (if payload len==126/127)   |
| |1|2|3|       |K|             |                               |
++++++++                +
|     Extended payload length continued, if payload len == 127  |
+                ++
|                               |Maskingkey, if MASK set to 1  |
+++
| Maskingkey (continued)       |          Payload Data         |
+                +
:                     Payload Data continued ...                :
+                                +



39

WEBSOCKET SERVER
A HTTP server supporting websockets is required. E.g., node, tomcat
SSL is strongly recommended because the websocket security is very weak,
and TCP packet checksums are not immune to collisions
Also, some deep packet inspecting routers and mobile data carriers will drop
websocket traffic
Your library should provide a fallback to long polling for these situations



40

WEBSOCKET API EXAMPLE
function testWebSocket()
{
  var websocket = new WebSocket("ws://localhost:8080/", "echoprotocol");
  websocket.onopen = function(evt) { 
    document.write("Connected!");  
    websocket.send("Hello world!");
  };
  websocket.onmessage = function(evt) { document.write("Received " + evt.data); };
}

Launch echo demo

http://www.djohn89.com/websockets/echo/demo.html


41

NODE JS SERVER CODE
var WebSocketServer = require('websocket').server;
var http = require('http');
var server = http.createServer();
server.listen(8080, function() { ...  });
wsServer = new WebSocketServer({ httpServer: server });
wsServer.on('request', function(request) { ... } );



42

MESSAGE QUEUES
Additional message queue functionality you'll need: more detailed message
format, client identification, channels, publish and subscribe, at least once
delivery, idempotent messages
If you don't do these things, be prepared to deal with 

, the , and 
Fallacies of distributed

computing Byzantine Generals' Problem CAP Theorem

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
https://en.wikipedia.org/wiki/Byzantine_Generals
https://en.wikipedia.org/wiki/CAP_theorem


43

MESSAGE QUEUE PROPERTIES
client identification: a unique identifier is assigned to each client
message identification: a unique identifier is assigned to each message (by
application ID, timestamps, sequence numbers, etc.)
message channels: messages are sent on a channel, which segments clients
publish and subscribe: clients can publish messages to a channel, which
relays them to some number of subscribing clients
at least once delivery: the server takes ownership of a message and resends
it to clients until they acknowledge receiving it, then sends a confirmation to
the originator
idempotent messages: receiving the same message more than once has no
effect.

ADDITIONAL PROPERTIES
message persistance: if you need persistance, use a real message queue
system (not just websockets)
Atomicity, Consistency, Isolation, Durability: if you need these, use a
database



database

44

EXAMPLES OF REAL WORLD LIBRARIES
Javascript: , , and 
Java: , , 
ASP.NET: 
Various Message Queues: , , 

Now you can finally build an application and solve a business problem!

Socket.IO SockJS many others
CometD Jetty Resin

SignalR
RabbitMQ with STOMP Apache ActiveMQ IBM MQ

Series

http://socket.io/
https://github.com/sockjs/sockjs-client
https://stackoverflow.com/questions/16392260/which-websocket-library-to-use-with-node-js
https://cometd.org/
https://eclipse.org/jetty/
http://www.caucho.com/resin-4.0/admin/websocket.xtp
https://www.asp.net/signalr
https://www.rabbitmq.com/stomp.html
http://activemq.apache.org/
https://www-03.ibm.com/software/products/en/ibm-mq


45

COMETD SERVLETS AND NODE JS
(Java) and (node.js) provide:CometD socket-io

message framing (start, stop, length)
keepalives (aka. heartbeats, to detect communication loss)
client identification
channels (segmented clients) with publish and subscribe
fallback to long polling (IE8 and older, mobile data providers, etc.)

They do NOT provide:

message persistance
at least once delivery guarantee
Atomicity, Consistency, Isolation, Durability

https://cometd.org/
http://socket.io/


46

CONCLUSIONS - WEBSOCKETS
Websockets are fast and efficient, but be aware of limitations of all TCP
sockets
Some message queue functionality is available
Choose a client and server library with these limitations in mind



47

END



48

PRIZES

Your IP: ::1

Your SID:
uZi0M0K8YIp3pe3JAAAI

Outcome:

Prize ID:

Winner SID:

Outcome:


